欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

启动工况下质子交换膜燃料电池动态性能仿真分析

  • 肖燕 ,
  • 常英杰 ,
  • 张伟 ,
  • 贾秋红
展开
  • 重庆理工大学机械工程学院,重庆 400054

收稿日期: 2017-06-07

  修回日期: 2017-07-07

  网络出版日期: 2017-07-26

基金资助

重庆理工大学青年科研项目星火支持计划(No. 2015XH08),重庆市教育委员会科学技术研究项目(No. KJ110810)资助

Simulation Analysis in Dynamic Performance of Proton Exchange Membrane Fuel Cell under Starting Condition

  • XIAO Yan ,
  • CHANG Ying-jie ,
  • ZHANG Wei ,
  • JIA Qiu-hong
Expand
  • School of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China

Received date: 2017-06-07

  Revised date: 2017-07-07

  Online published: 2017-07-26

摘要

本文以等效电路模型为基础模型,结合动态气体压力模型和动态热传输模型建立了集总参数模型,在SIMULINK环境下,利用建立的模型模拟了电池启动过程,发现了电压的下冲现象,且电压的响应时间与电池温度的响应时间基本一致,说明启停过程中电池温度对电池的动态性能影响很大. 进一步从温度角度对模型中决定电池输出电压大小的热力学电动势、活化过电势、欧姆过电势和浓差过电势的动态响应情况进行了分析,发现启动过程电压的下冲现象主要由电池活化过电势和欧姆过电势的过冲引起;当以阶跃信号形式输入温度时,启动过程电池输出电压响应很快且未发生下冲现象,说明提高电池温度的响应速度能够改善电池的动态性能.

本文引用格式

肖燕 , 常英杰 , 张伟 , 贾秋红 . 启动工况下质子交换膜燃料电池动态性能仿真分析[J]. 电化学, 2018 , 24(2) : 166 -173 . DOI: 10.13208/j.electrochem.170607

Abstract

Based on the equivalent circuit model, by considering both the dynamic gas pressure model and the dynamic heat transfer model, a lumped parameter model is developed. The start process of the fuel cell is simulated by using SIMULINK software. The undershoot of the voltage is observed from the simulation results, and the response time of the voltage is basically the same as that of the fuel cell temperature, which indicates that the temperature has great influence on the dynamic performance of the fuel cell. From the perspective of the temperature, the dynamic responses of the thermodynamic potential, the activation overvoltage, the ohmic overvoltage and the concentration overvoltage of the fuel cell iare analyzed. It is found that the overshoot of the activation overvoltage and the ohmic overvoltage cause the voltage undershoot. When the temperature is input in the form of a step signal, the output voltage response of the fuel cell is fast, and thus, undershoot and overshoot do not occur. Therefore, it can improve the dynamic performance of the fuel cell with the increasing of temperature response speed.

参考文献

[1] Larminie J, Dicks A. Fuel cell systems explained, 2nd Edition[M]. England: John Wiley & Sons Ltd, 2003: 23-24.
[2] Han M, Chan S H, Jiang S P. Investigation of self-humidifying anode in polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2007, 32(3):385-391.

[3] Mann R F, Amphlett J C, Hooper M A I, et al. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell[J]. Journal of Power Sources, 2000, 86(1/2):173-180.

[4] Khan M J, Iqbal M T. Modelling and Analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system[J]. Fuel Cells, 2005, 5(4):463-475.

[5] Xue X, Tang J, Smirnova A, et al. System level lumped-parameter dynamic modeling of PEM fuel cell[J]. Journal of Power Sources, 2004, 133(2):188–204.

[6] Pathapati P R, Xue X, Tang J. A new dynamic model for predicting transient phenomena in a PEM fuel cell system[J]. Renewable Energy, 2005, 30(1):1-22.

[7] Li Q(李奇), Chen W R(陈维荣), Jia J B(贾俊波), et al. Improved dynamic modeling of proton exchange membrane fuel cell[J]. Journal of System Simulation(系统仿真学报), 2009, 21(12):3588-3591.

[8] Tang Y, Yuan W, Pan M, et al. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes[J]. Applied Energy, 2010, 87(4):1410-1417.

[9] Jian Q, Zhao Y, Wang H. An experimental study of the dynamic behavior of a 2kW proton exchange membrane fuel cell stack under various loading conditions[J]. Energy, 2015, 80:740-745.

[10]O'Hayre R, Cha S W, Colella W, et al. Fuel Cell fundamentals[M].Beijing:Publishing House of Electronics Industry(电子工业出版社), 2007:50-77.

[11] Jia Q H(贾秋红), Han M(韩明), Deng B(邓斌), et al. Dynamic modeling and characteristic analysis of  proton exchange membrane fuel cell[J]. Journal of Electrochemistry(电化学), 2011(4):438-443.

[12] Mench M M. Fuel cell engines[M]. John Wiley & Sons, 2008:157-163.

[13] Corrêa J M, Farret F  A, Canha L N, et al. An electrochemical-based fuel-cell model suitable for electrical engineering automation approach[J]. IEEE Transactions on Industrial Electronics, 2004, 51(5):1103-1112.

[14] Amphlett J C, Mann R F, Peppley B A , et al. A model predicting transient responses of proton exchange membrane fuel cells[J]. Journal of Power Sources, 1996, 61(1/2):183-188.

文章导航

/