欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

分级过程对LiFePO4/C电池性能的影响

  • 刘兴亮 ,
  • 杨茂萍 ,
  • 汪伟伟 ,
  • 曹勇
展开
  • 合肥国轩高科动力能源有限公司,安徽 合肥 230011

收稿日期: 2016-09-30

  修回日期: 2017-01-14

  网络出版日期: 2017-06-08

基金资助

安徽省科技攻关项目(No. 1501021011)资助

Effects of jet milling and classifying process on the performance of LiFePO4/C in full batteries

  • LIU Xing-liang ,
  • YANG Mao-ping ,
  • WANG Wei-wei ,
  • CAO Yong
Expand
  • Hefei Guoxuan High-tech Power Energy Co.,Ltd, Hefei, Anhui 230011, China

Received date: 2016-09-30

  Revised date: 2017-01-14

  Online published: 2017-06-08

摘要

本文采用磷酸铁工艺路线制备碳包覆的磷酸铁锂(LiFePO4/C)复合正极材料,系统考察气流粉碎分级过程对LiFePO4/C正极材料及全电池性能的影响. 研究表明:分级前磷酸铁锂颗粒粒度较大,中值粒径为17.37μm,呈规整球形形貌,具有较高的振实密度和碳含量;分级后球形被打碎,振实减小. 全电池测试结果显示:分级过程对全电池的容量、交流内阻、直流内阻、功率密度的影响较小;但分级前电芯的低温放电容量保持率和550周的高温循环保持率分别60.1%和87.5%,明显优于分级后的49.5%和84.7%. 分级前碳层能均匀包覆在磷酸铁锂表面形成均匀导电网络,而分级过程将磷酸铁锂的碳层有一定的剥离和破坏导致性能下降.

本文引用格式

刘兴亮 , 杨茂萍 , 汪伟伟 , 曹勇 . 分级过程对LiFePO4/C电池性能的影响[J]. 电化学, 2017 , 23(6) : 661 -666 . DOI: 10.13208/j.electrochem.160930

Abstract

The carbon coated lithium iron phosphate (LiFePO4/C) composite cathode material was prepared by using iron phosphate process. The effects of jet milling and classifying process on the electrochemical performance of LiFePO4/C cathode material in full batteries were investigted. Scanning electron microscopic analyses suggested that the globose secondary particles were crustily crushed during the jet milling and classifying process, which would further result in lower tap density and carbon content. The LiFeP4/C composite cathode materials with different physical characteristics were further tested in full batteries to evaluate the electrochemical properties. The results showed no obvious differences in capacity, AC resistance, DC resistance and power density. However, the globose LiFePO4/C exhibited far better performances in low temperature discharge capacity retention rate and high temperature cycle retention than that of granulated composite cathode, which probably arisen from the certain delamination and destruction of conductive network during the jet milling and classifying process.

参考文献

[1] Beninati S, Damen L, Mastragostino M. Fast sol-gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application[J]. Journal of Power Sources, 2009, 194(2): 1094-1098.

[2] Maier J. Nanoionics: ion transport and electrochemical storage in confined system[J]. Nature Materials, 2005, 4(11): 805-815.

[3] Wu K P, Peng Z D, Cao Y B, et al. Synthesis and characterization of high-rate LiMn1/3Fe2/3PO4/C composite using nano MnFe2O4 as precursor[J]. Materials letters, 2015, 152: 217-219.

[4] Cui Y, Zhao X L, Guo R S. High rate electrochemical performances of nanosized ZnO and carbon co-coated LiFePO4 cathode[J]. Materials Research Bulletin, 2010, 45(7): 844-849.

[5] Molenda J, Ojczyk W, ?wierczek K, et al. Diffusional mechanism of deintercalation in LiFe1−yMnyPO4 cathode material[J]. Solid State Ionics, 2006, 177(26-32): 2617-2624.

[6] Xu G J, Liu Z H, Cui G L, et al. Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures[J]. Journal of Materials Chemistry A, 2015(3): 4092-4123.

[7] Huang H, Yin S C, L. F. Nazar. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochemical and Solid-State Letters, 2001, 4(10): 170-172.

[8] Swain P, Viji M, Pavana S V, et al. Carbon coating on the current collector and LiFePO4 nanoparticles–Influence of sp2 and sp3-like disordered carbon on the electrochemical properties[J]. Journal of Power Sources, 2015, 293: 613-625.

[9] Rangappa D, Sone K, Kudo T, et al. Directed growth of nanoarchitectured LiFePO4 electrode by solvothermal synthesis and their cathode properties[J]. Journal of Power Sources. 2010, 195(18): 6167-6171.

[10] Qian L C, Xia Y, Zhang W K , et al. Electrochemical synthesis of mesoporous FePO4 nanoparticles for fabricating high performance LiFePO4/C cathode materials[J]. Microporous and Mesoporous Materials, 2012, 152:128-133.

[11] Peng W X, Jiao L F, H Y Gao, et al. A nove sol-gel method based on FePO4·2H2O to synthesize submicrometer structured LiFePO4/C cathode material[J]. Journal of Power Sources, 2011, 196(5): 2841-2847.

[12] Yamada A, Chung S C, Hinokuma K, Optimized LiFePO4 for lithium battery cathodes[J]. Journal of The Electrochemical Society, 148 (2001) A224-229.

[13] Tang Z Y(唐致远), Gao F(高飞), Xue J J(薛建军). Effects of Ball-milling on the Preparation of LiFePO4 Cathode Material for Lithium-ion Batteries(球磨方式对锂离子正极材料LiFePO4性能的影响)[J]. Chinese Journal of Inorganic Chemistry(无机化学学报), 2007, 23(8):1415-1420.

[14] Gao F(高飞), Tang Z Y(唐致远), Xue J J(薛建军). Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method[J]. Chinese Journal of Inorganic Chemistry (无机化学学报), 2007, 23(9): 1603-1608.

[15] Zhang Y H, Song W J, Lin S L, et al. A novel model of the initial state of charge estimation for LiFePO4 batteries[J]. J. Power Sources, 2014, 248(15): 1028-1033.

文章导航

/