欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Co3(HCOO)6@rGO 作为锂离子电池负极材料的研究

  • 江恒 ,
  • 范镜敏 ,
  • 郑明森 ,
  • 董全峰
展开
  • 厦门大学固体表面物理化学国家重点实验室,厦门大学化学化工学院化学系,能源材料协同创新中心,福建 厦门 361005

收稿日期: 2017-04-12

  修回日期: 2017-06-07

  网络出版日期: 2017-06-19

基金资助

973 项目(No. 2015CB251102)和国家自然科学基金项目(No. U1305246,No. 21673196,No. 21621091)资助

Co3(HCOO)6@rGO as a Promising Anode for Lithium Ion Batteries

  • JIANG Heng ,
  • FAN Jing-min ,
  • ZHENG Ming-sen ,
  • DONG Quan-feng
Expand
  • State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Xiamen 361005, China

Received date: 2017-04-12

  Revised date: 2017-06-07

  Online published: 2017-06-19

摘要

MOFs材料作为一类新型的锂离子电池电极材料而受到广泛关注和研究. 作者通过溶液扩散法将Co3(HCOO)6原位负载在 rGO(还原氧化石墨烯)上制备出Co3(HCOO)6@rGO复合材料. 将Co3(HCOO)6@rGO作为锂离子电池负极材料,以500 mA·g-1的电流密度恒电流充放电循环 100 周后,仍然保持有 926 mAh·g-1 的比容量,亦表现出很好的倍率性能. 循环伏安和X-射线光电子能谱测试表明,Co3(HCOO)6@rGO材料上的Co2+和甲酸根在充放电过程中均发生可逆的电化学反应. 对比同样采用溶液扩散法合成的 Co3(HCOO)6 的测试结果发现,rGO起到活化甲酸根的电化学反应的作用,同时也改善了Co3(HCOO)6的倍率性能. 将MOFs材料与rGO复合为优化 MOFs 材料的电池性能提供了一个新思路.

本文引用格式

江恒 , 范镜敏 , 郑明森 , 董全峰 . Co3(HCOO)6@rGO 作为锂离子电池负极材料的研究[J]. 电化学, 2018 , 24(3) : 207 -215 . DOI: 10.13208/j.electrochem.170412

Abstract

Metal–organic framework(MOF) is a kind of novel electrode materials for lithium ion batteries. Here, a composite material Co3(HCOO)6@rGO was synthesized for the first time by in situ loading of Co3(HCOO)6 on rGO (reduced oxide graphene) through a solution chemistry method. As an anode material for lithium ion batteries, it exhibited an excellent cycle stability as well as a large reversible capacity of 926 mAh·g-1 at a current density of 500 mA·g-1 after 100 cycles within the voltage range of 0.02 ~ 3.0 V vs. Li/Li+ with a good rate capability. The results of cyclic voltammetry and XPS measurements revealed that both Co2+ and formate ions in Co3(HCOO)6@rGO uderwent reversible electrochemical reactions during the charge and discharge process. Compared with Co3(HCOO)6 synthesized through the same method, it was found that rGO could activate the electrochemical reaction of formate ion, which improved the Co3(HCOO)6 rate performance.A new route was demonstrated through this work to enhance the specific capacity and rate capability of MOFs by introducing rGO.

参考文献

[1]  Armand M, Tarascon J M. Building better batteries[J]. Naure, 2008, 451(7179): 652-657.
[2]  Chu D B(褚道葆), Li J(李建), Yuan X M(袁希梅), et al. Tin-based alloy anode materials for lithium ion batteries[J]. Progress in Chemistry(化学进展), 2012, 27(8): 1466-1476.
[3]  Huang X L, Wang R Z, Xu D, et al. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries[J]. Advanced Functional Materials, 2013, 23(35): 4345-4353.
[4]  Armand M, Grugeon S, Vezin H, et al. Conjugated dicarboxylate anodes for Li-ion batteries[J]. Nature Materials, 2009, 8(2): 120-125.
[5]  Wang S, Wang L, Zhang K, et al. Organic Li4C8H2O6 nano-sheets for lithium-ion batteries[J]. Nano Letters, 2013, 13(9): 4404-4409.
[6]  Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1213-1214.
[7]  Ke F S, Wu Y S, Deng H. Metal-organic frameworks for lithium ion batteries and supercapacitors[J]. Journal of Solid State Chemistry, 2015, 223(S1): 109-121.
[8]  Liu Y, Wang Z U, Zhou H C. Recent advances in carbon dioxide capture with metal-organic frameworks[J]. Greenhouse Gases: Science and Technology, 2012, 2(4): 239-259.
[9]  Wang Z, Chen G, Ding K. Self-supported catalysts[J]. Chemical Reviews, 2009, 109(2): 322-359.
[10]  Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angewandte Chemie International Edition, 2007, 46(40): 7548-7558.
[11]  Motokawa N, Matsunaga S, Takaishi S, et al. Reversible magnetism between an antiferromagnet and a ferromagnet related to solvation/desolvation in a robust layered [Ru2]2TCNQ charge-transfer system[J]. Journal of the American Chemical Society, 2010, 132(34): 11943-11951.
[12]  Liu K, You H P, Zheng Y H, et al. Facile and rapid fabrication of metal-organic framework nanobelts and colortunable photoluminescence properties[J]. Journal of Materials Chemistry, 2010, 20(16): 3272-3279.
[13]  Li X, Cheng F, Zhang S, et al. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2[J]. Journal of Power Sources, 2006, 160(1): 542-547.
[14]  Gou L, Hao L M, Shi Y X, et al. One-pot synthesis of a metal-organic framework as an anode for Li-ion batteries with improved capacity and cycling stability[J]. Journal of Solid State Chemistry, 2014, 210(1): 121-124.
[15]  Su F Y, You C, He Y B, et al. Flexible and planar graphene conductive additives for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(43): 9644-9650.
[16]  Wang Z, Zhang B, Kurmoo M, et al. Synthesis and characterization of a porous magnetic diamond framework, Co3(HCOO)6, and its N2 sorption characteristic[J]. Inorganic Chemistry, 2005, 44(5): 1230-1237.
[17]  Guo J C, Liu Q, Wang C S, et al. Interdispersed amorphous mnox-carbon nanocomposites with superior electrochemical performance as lithium-storage material[J]. Advanced Functional Materials, 2012, 22(4): 803-811.
[18]  Wang L P, Mou C X, Sun Y, et al. Structure-property of metal organic frameworks calcium terephthalates anodes for lithium-ion batteries[J]. Electrochimica Acta, 2015, 173: 235-241.
[19]  Khassin A A, Yurieva T M, Kaichev V V, et al. Metal-support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies[J]. Journal of Molecular Catalysis A: Chemical, 2001, 175(1/2): 189-204.
[20]  Kocijan A, Milošev I, Pihlar B. Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis[J]. Journal of Materials Science: Materials in Medicine, 2004, 15(6): 643-650.
[21]  Fu L, Liu Z M, Liu Y Q, et al. Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices[J]. Advanced Materials, 2005, 17(2): 217-221.
[22]  Coulter K E, Sault A G. Effects of activation on the surface properties of silica-supported cobalt catalysts[J]. Journal of Catalysis, 1995, 154(1): 56-64.
[23]  Yang Z, Xu X, Liang X, et al. MIL-53(Fe)-graphene nanocomposites: Efficient visible-light photocatalysts for the selective oxidation of alcohols[J]. Applied Catalysis B: Environmental, 2016, 198: 112-123.
[24]  Sivaprakash S, Majumder S B. Spectroscopic analyses of 0.5Li[Ni0.8Co0.15Zr0.05]O2-0.5Li[Li1/3Mn2/3]O2 composite cathodes for lithium rechargeable batteries[J]. Solid State Ionics, 2010, 181(15/16): 730-739.
[25]  Leroy S, Martinez H, Dedryvère R, et al. Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study[J]. Applied Surface Science, 2007, 253(11): 4895-4905.
文章导航

/