欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

FEC 基电解液对高压正极材料 Li2CoPO4F 电化学性能的影响

  • 王志刚 ,
  • 赵卫民 ,
  • 王红春 ,
  • 林 敏 ,
  • 龚正良 ,
  • 杨 勇
展开
  • 1. 厦门大学能源学院, 福建 厦门 361005; 2. 固体表面物理化学国家重点实验室, 厦门大学化学化工学院, 福建 厦门 361005

收稿日期: 2017-05-11

  修回日期: 2017-06-06

  网络出版日期: 2017-06-09

基金资助

福建省自然科学基金项目(No.2014J05019)、国家自然科学基金项目(No.21233004,No.21303147)和厦门大学校长基金(No. 20720150090)资助

Influences of FEC-based Electrolyte on Electrochemical Performance of High Voltage Cathode Material Li2CoPO4F

  • WANG Zhi-gang ,
  • ZHAO Wei-min ,
  • WANG Hong-chun ,
  • LIN Min ,
  • GONG Zheng-liang ,
  • YANG Yong
Expand
  • 1.College of Energy,Xiamen University,Xiamen 361005,Fujian,China;2. State Key Lab of Physical Chemistry of Solid Surfaces,and College of Chemistry & Chemical Engineering,Xiamen University,Xiamen 361005,Fujian,China

Received date: 2017-05-11

  Revised date: 2017-06-06

  Online published: 2017-06-09

摘要

本文研究了以氟代碳酸乙烯酯FEC(fluoroethylene carbonate)为共溶剂的电解液对高压正极材料 Li2CoPO4F 电化学性能的影响,与碳酸酯基电解液1 mol·L-1 LiPF6 EC/DMC=1:1(m:m)相比,1 mol·L-1 LiPF6 FEC/DMC=1:1(m:m)可显著提高Li2CoPO4F的循环稳定性. 通过线性扫描伏安法(LSV)、扫描电镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)结合电化学阻抗(EIS)对 FEC 改善 Li2CoPO4F 材料循环稳定性的机理进行了探索,结果表明与传统碳酸酯基电解液相比,FEC 基电解液在高压下有着优异的抗氧化性,能够有效抑制电解液的氧化分解. 同时,FEC 基电解液中形成的表面膜具有更高的稳定性,能够抑制电极/电解液界面副反应的发生,提高循环过程中电极材料结构稳定性,从而有益于提高 Li2CoPO4F 材料的电化学性能.

本文引用格式

王志刚 , 赵卫民 , 王红春 , 林 敏 , 龚正良 , 杨 勇 . FEC 基电解液对高压正极材料 Li2CoPO4F 电化学性能的影响[J]. 电化学, 2018 , 24(3) : 216 -226 . DOI: 10.13208/j.electrochem.170509

Abstract

The effects of fluoroethylene carbonate (FEC) as co-solvent on the electrochemical performance of high voltage cathode material Li2CoPO4F are investigated. Compared with traditional carbonate based electrolyte (1 mol·L-1 LiPF6 EC/DMC (1:1, m:m)), the FEC/DMC based electrolyte can significantly improved the electrochemical performance of Li2CoPO4F. After 100 cycles between 3V and 5.4 V at 1 C rate, the capacity retention of Li2CoPO4F electrode in 1 mol·L-1 LiPF6 EC/DMC (1:1, m:m) was 52.6 % , while that in the EC/DMC based electrolyte was only 14.5 %. Possible functional mechanisms of FEC improving the electrochemical performance of Li2CoPO4F were studied by LSV, EIS, SEM and XPS measurements. It was shown that compared with the traditional EC/DMC based electrolyte, the FEC/DMC based electrolyte exhibited higher stability at high voltage, which suppressed the side reactions at electrode/electrolyte interface when charged to high voltage, and improved the structure stability of Li2CoPO4F during cycling, thus, significantly enhanced the electrochemical performance of Li2CoPO4F.

参考文献

[1]  Yu J G, Rosso K M, Zhang J G. Ab initio study of lithium transition metal fluorophosphate cathodes for rechargeable batteries[J]. Journal of Materials Chemistry A, 2011, 21(32): 12054-12058.
[2]  Schoiber J, Berge R J F, Yada C, et al. A Two-step synthesis for Li2CoPO4F as high-voltage cathode material[J].Journal of The Electrochemical Society, 2015, 162(14): A2679-A2683.
[3]  Truong Q D, Devarajiu M K, Ganbe Y, et al. Structural analysis and electrochemical performance of Li2CoPO4F cathode materials[J]. Electrochimica Acta, 2014, 127: 245-251.
[4]  Fedotov S S, Kabanov A A, KabanovaC N A, et al. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(6): 3194-3202.
[5]  Amaresh S, Karthikeyan K, Kim K J, et al. Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties[J]. Journal of Power Sources, 2013, 244: 395-402.
[6]  Wu X B, Gong Z L,Tan S, et al. Sol-gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries[J]. Journal of Power Sources, 2012, 220: 122-129.
[7]  Wu X B, Wang S H, Li X C, et al. Promoting long-term cycling performance of high-voltage Li2CoPO4F by the stabilization of electrode/electrolyte interface[J]. Journal of Materials Chemistry A, 2014, 2(4): 1006-1013.
[8]  Wang D Y, Xiao J, Xu W, et al. Preparation and electrochemical investigation of Li2CoPO4F cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(4): 2241-2245.
[9]  Khasanova N R, Drozhzhin O A, Fedotov S S, et al. Synthesis and electrochemical performance of Li2Co1-xMxPO4F (M = Fe, Mn) cathode materials[J]. Beilstein Journal of Nanotechnology, 2013, 4: 860-867.
[10]  Wang L, Ma Y L, Qu Y T, et al. Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode for lithium-ion batteries[J]. Electrochimica Acta, 2016, 191: 8-15.
[11]  Sharabi R, Markevich E, Fridman K, et al. Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes[J]. Electrochemistry Communications 2013, 28: 20-23.
[12]  Wu Y P(吴宇平). Li-ion batteries: Application and practices[M]. Beijing: Chemical Industry Press(化学工业出版社), 2004: 213-214.
[13]  Xu W, Chen X L, Ding F, et al. Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5 V Li-ion battery applications[J]. Journal of Power Sources, 2012, 213: 304-316.
[14]  Kiyoshi K. Anodic oxidation of nonaqueous electrolytes on cathode materials and current collectors for rechargeable lithium batteries[J]. Journal of Power Sources, 1999, 81: 123-129.
[15]  Luo Y, Lu T L, Zhang Y X, et al. Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode using an electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane[J]. Journal of Power Sources, 2016, 323: 134-141.
[16]  Wu X W, Li X H, Wang Z X, et al. Comprehensive reinvestigation on the initial coulombic efficiency and capacity fading mechanism of LiNi0.5Mn1.5O4 at low rate and elevated temperature[J]. Journal of Solid State Electrochemistry, 2013, 17(4): 1029-1038.
[17]  Khasanova N R, Gavrilov A N, Antipov E V, et al. Structural transformation of Li2CoPO4F upon Li-deintercalation[J]. Journal of Power Sources, 2011, 196(1): 355-360.
[18]  Okumura T, Shikano M, Yamaguchi Y, et al. Structural changes in Li2CoPO4F during lithium-ion battery reactions[J]. Chemistry of Materials, 2015, 27(8): 2839-2847.
[19]  Yan G C, Li X H, Wang Z X, et al. Tris(trimethylsilyl)-phosphate: A film-forming additive for high voltage cathode material in lithium-ion batteries[J]. Journal of Power Sources, 2014, 248: 1306-1311.
[20]  Zheng X Y, Huang T, Pan Y, et al. High-voltage performance of LiNi1/3Co1/3Mn1/3O2/graphite batteries with di-(methylsulfonyl) methane as a new sulfone-based electrolyte additive[J]. Journal of Power Sources, 2015, 293: 196-202.
[21]  Li Y, Lian F, Ma L L, et al. Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high-capacity Li1.16[Mn0.75Ni0.25]0.84O2 material[J]. Electrochimica Acta, 2015, 168: 261-270.
[22]  Wang C Y, Yu L, Fan W Z, et al. 3,3'-(Ethylenedioxy)dipropiononitrile as an electrolyte additive for 4.5 V LiNi1/3Co1/3Mn1/3O2/graphite cells[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9630-9639.
[23]  Martha S K, Nanda J, Veith G M, et al. Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2 [J]. Journal of Power Sources, 2012, 216: 179-186.
[24]  Xu M Q, Zhou L, Dong Q N, et al. Development of novel lithium borate additives for designed surface modification of high voltage LiNi0.5Mn1.5O4 cathodes[J]. Energy & Environmental Science, 2016, 8(4): 1308-1319.
[25]  Markevich E, Sharabi R, Gottlieb H, et al. Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions [J]. Electrochemistry Communications, 2012, 15(1): 22-25.

文章导航

/