欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

二氧化钼-碳复合涂层的电化学性能研究

  • 李全一 ,
  • 杨琪 ,
  • 赵艳红
展开
  • 上海工程技术大学材料工程学院,上海201620

收稿日期: 2017-04-09

  修回日期: 2017-05-24

  网络出版日期: 2017-06-07

基金资助

上海市教委高峰学科(高能束智能加工和绿色制造)和上海工程技术大学研究生创新项目(No.16KY0512)资助

Electrochemical Performance of MoO2-C Composite Coatings

  • LI Quan-yi ,
  • YANG Qi ,
  • ZHAO Yan-hong
Expand
  • School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620

Received date: 2017-04-09

  Revised date: 2017-05-24

  Online published: 2017-06-07

摘要

应用简单的刮涂法以及真空煅烧可制备出承载在铜箔表面的二氧化钼-碳(MoO2-C)复合涂层,并对样品的形貌、成分、结构和电化学性能进行分析.结果表明,该复合涂层由单斜结构的MoO2纳米粒子和无定形碳组成.一些MoO2纳米粒子承载在碳基体表面,其尺寸为5~30nm;一些MoO2纳米粒子包覆在碳基体内部,其尺寸约为5nm. MoO2-C复合涂层为多孔结构,其孔隙尺寸为1~3nm.该复合涂层与铜箔结合紧密,界面处没有裂纹.承载在铜箔表面的MoO2-C复合涂层的比容量高、循环和倍率性能良好.在100mA·g-1电流密度下,该负极经过100次循环后的比容量为814mAh·g-1,在循环过程中没有出现明显的容量衰减,即使在5000mA·g-1的高电流密度下,其比容量仍有188mAh·g-1.

本文引用格式

李全一 , 杨琪 , 赵艳红 . 二氧化钼-碳复合涂层的电化学性能研究[J]. 电化学, 2018 , 24(2) : 160 -165 . DOI: 10.13208/j.electrochem.170409

Abstract

The molybdenum dioxide-carbon(MoO2-C)composite coatings on the surface of Cu foils were prepared by simple knife coating route and followed by sintering in vacuum. The morphology, composition, structure and electrochemical performance of the MoO2-C composite coatings were investigated. The results demonstrated that the MoO2-C composite coatings consist of MoO2 nano-particles with monoclinic crystal structure and amorphous carbon. Some MoO2 nano-particles with a size range of 5-30nm were loaded on the surface of carbon matrices; while some MoO2 nano-particles with a size of ~5nm were encapsulated inside. The composite coatings showed porous structure with the pore size ranging 1~3nm. The composite coatings attached firmly on the surface of Cu foils without any cracks accurred at their interface. The Cu-supported MoO2-C composite coatings delivered high capacity and good cyclic performance with a capacity of 814 mAh·g-1 at a current density of 100mA·g-1 after 100 cycles without apparent capacity fading during cycling, and good rate performance with a capacity of 188mAh·g-1 even at a high current density of 5000mA·g-1.

参考文献

[1] Wu J X, Qin X Y, Zhang H R, et al. Multilayered silicon embedded porous carbon/graphene hybrid ?lm as a high performance anode [J]. Carbon, 2015, 84: 434-443.

[2] Zhang Q W(张勤伟), Li Y Y(李运用), Shen P K(沈培康). Nanosized Fe2O3 on three dimensional hierarchical porous graphene like matrices as high performance anode material for lithium ion batteries [J]. Journal of Electrochemistry(电化学), 2015, 21(1): 66-71.

[3] Bai C D(白成栋), Chen J J(陈嘉嘉), Zhang Q(张琦), et al. Preparation and application of nano- NiO as anode in lithium-ion batteries [J]. Journal of Electrochemistry(电化学), 2011, 17(4): 363-365.

[4] Huang F(黄峰), Yuan Z Y(袁正勇), Zhou Y H(周运鸿), et al. Nano-sized cobalt-based oxides as negative electrode for lithium-ion batteries [J]. Journal of electrochemistry(电化学), 2002, 8(4): 397-403.

[5] Zhou Y, Liu Q, Liu D B, et al. Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery [J]. Electrochimica Acta, 2015, 174: 8-14.

[6] Luo W, Hu X L, Sun Y M, et al. Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties [J]. Physical Chemistry Chemical Physics., 2011, 13(37): 16735-16740.

[7] Liu B Y, Shao Y F, Zhang Y L, et al. Highly efficient solid-state synthesis of carbon-encapsulated ultrafine MoO2 nanocrystals as high rate lithium-ion battery anode [J]. Journal of nanoparticles research, 2016, 18(12): Article Number:375.

[8] Gao H, Liu C L, Liu Y, et al. MoO2-loaded porous carbon hollow spheres as anode materials for lithium-ion batteries [J]. Materials Chemistry and Physics, 2014, 147(1/2): 218-224.

[9] Li H P, Wei Y Q, Zhang Y G, et al. In situ sol-gel synthesis of ultrafine ZnO nanocrystals anchored on graphene as anode material for lithium-ion batteries [J]. Ceramics International, 2016, 42(10): 12371-12377.

[10] Yu J Y, Sun T, Yang Q, et al. Porous carbon networks containing Si and SnO2 as high performance anode materials for lithium-ion batteries [J]. Materials Letters, 2016, 184: 169-172.

[11] Qin Y L, Li F, Bai X B, et al. A novel Si film with Si nanocrystals embedded in amorphous matrix on Cu foil as anode for lithium ion batteries [J]. Materials Letters, 2015, 138: 104-106.

[12] Tang Y P, Hong L, Wu Q L, et al. TiO2 (B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries [J]. Electrochimica Acta, 2016, 195 (20): 27-33.

[13] Wang J X, Zhang Q B, Li X H, et al. Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries [J]. Nano energy, 2014, 6: 19-26.

[14] Wang B B, Wang G, Wang H. In situ synthesis of Co3O4/Cu electrode and its high performance for lithium-ion batteries [J]. Materials Letters, 2014, 122: 186-189.

[15] Gu C D, Mai Y J, Zhou J P, et al. Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery [J]. Journal of Power Sources, 2012, 214: 200-207.

[16] Zhao H P, Jiang C Y, He X M, et al. A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu-Sn alloy process [J]. Ionics, 2008, 14 (2): 113-120.

[17] Wu M, Li X W, Zhou Q, et al. Fabrication of Sn film via magnetron sputtering towards understanding electrochemical behavior in  lithium-ion battery application [J]. Electrochimica Acta, 2014, 123: 144-150.

[18] Hassan M F, Rahman M M, Guo Z P, et al. SnO2-NiO-C nanocomposite as a high capacity anode material for lithium-ion batteries [J]. Journal of Materials Chemistry, 2010, 20(43): 9707-9712.

[19] Zeng L X, Zheng C, Deng C L, et al. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2013, 5(6): 2182-2187.

[20] Yoon S K, Jung K N, Jin C S, et al. Synthesis of nitrided MoO2 and its application as anode materials for lithium-ion batteries [J]. Journal of Alloys and Compounds, 2012, 536: 179-183.

[21] Yang Q, Zhao J C, Sun T, et al. Enhanced performance of SnO2-C composite fibers containing NiO as lithium-ion battery anodes [J]. Ceramics International, 2015, 41(9): 11213-11220.

[22] Kim D, Lee D H, Kim J S, et al. Electrospun Ni-Added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2012, 4 (10): 5408-5415.

文章导航

/