欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Co3O4/Ti电催化膜电极制备及其苯甲醇催化氧化性能

  • 郑玉梅 ,
  • 尹振 ,
  • 王虹 ,
  • 李建新
展开
  • 1. 天津工业大学分离膜与膜过程国家重点实验室/分离膜科学与技术国际联合研究中心,天津 300387; 2. 天津工业大学环境与化学工程学院,天津 300387; 3. 天津工业大学材料科学与工程学院,天津 300387

收稿日期: 2017-04-07

  修回日期: 2017-05-11

  网络出版日期: 2017-05-12

基金资助

国家自然科学基金项目(No. 21576208, No. 21676200)、天津市应用基础与前沿技术研究计划(No. 15JCQNJC05300)及天津市科技计划项目(No. 15PTSYJC00240)资助

Preparation of Co3O4/Ti Electrocatalytic Membrane Electrode for Catalytic Oxidation of Benzyl Alcohol

  • ZHENG Yu-mei ,
  • YIN Zhen ,
  • WANG Hong ,
  • LI Jian-xin
Expand
  • 1. State Key Laboratory of Separation Membranes and Membrane Processes/Separation Membrane Science and Technology International Joint Research Centre, Tianjin Polytechnic University, Tianjin 300387, China; 2. School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China; 3. School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China

Received date: 2017-04-07

  Revised date: 2017-05-11

  Online published: 2017-05-12

摘要

本文采用浸渍涂覆法成功制备出多孔Ti负载纳米Co3O4电催化膜电极(Co3O4/Ti),以该膜电极为阳极,辅助电极为阴极,构建电催化膜反应器(electrocatalytic membrane reactor,ECMR)用于可控催化氧化苯甲醇制备苯甲醛和苯甲酸,并考察了 Co3O4/Ti 膜电极结构、电化学性能以及ECMR不同操作参数对苯甲醇转化率、苯甲醛和苯甲酸选择性的影响. 结果表明,负载Co3O4纳米颗粒可以显著提高Ti膜电极的电化学性能和催化活性. 在常温常压下,当反应物苯甲醇浓度为10 mmol·L-1,pH为7.0,停留时间为5.0 min,电流密度为2.5 mA·cm-2,苯甲醇的转化率达到49.8%,苯甲醛选择性为51.5%,苯甲酸选择性为23.6%.

本文引用格式

郑玉梅 , 尹振 , 王虹 , 李建新 . Co3O4/Ti电催化膜电极制备及其苯甲醇催化氧化性能[J]. 电化学, 2018 , 24(2) : 122 -128 . DOI: 10.13208/j.electrochem.170407

Abstract

The cobalt oxide(Co3O4) nanoparticles were loaded on microporous Ti membrane to prepare Co3O4/Ti electrocatalytic membrane electrode by dip-coating method. The microstructures and electrochemical properties of Co3O4/Ti electrocatalytic membrane were investigated. The Co3O4/Ti electrocatalytic membrane reactor (ECMR) assembled by using the Co3O4/Ti electrocatalytic membrane as an anode was adopted for catalytic oxidation of benzyl alcohol to produce benzaldehyde and benzoic acid.The effects of different operation parameters on benzyl alcohol conversion, and selectivity to benzaldehyde and benzoic acid of ECMR were studied. The results indicated that the electrochemical performance and catalytic activity of Co3O4/Ti membrane were improved significantly. The values of 49.8% for the conversion of benzyl alcohol, 51.5% for the selectivity to benzaldehyde and 23.6% for the selectivity to benzoic acid were obtained under the operating conditions with the benzyl alcohol concentration of 10 mmol·L-1, pH of 7.0, residence time of 5.0 min, current density of 2.5 mA·cm-2 at ambient temperature and pressure.

参考文献

[1]  Parmeggiani C, Cardona F. Transition metal based catalysts in the aerobic oxidation of alcohols[J]. Green Chem- istry, 2012, 14(3): 547-564.
[2] Enache D I, Edward J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts[J]. Science, 2006, 311(5759): 362-365.
[3]  Liu J, Yang H Q, Kleitz F, et al. Yolk-shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation[J]. Advanced Functional Materials, 2012, 22(3): 591-599.
[4]  Watanabe H, Asano S, Fujita S, et al. Nitrogen-doped, metal-free activated carbon catalysts for aerobic oxidation of alcohols[J]. ACS Catalysis, 2015, 5(5): 2886-2894.
[5] Adam W, Gelalcha F G, Saha-Möller C R, et al. Chemoselective C-H oxidation of alcohols to carbonyl compounds with iodosobenzene catalyzed by (salen) chromium complex[J]. The Journal of Organic Chemistry, 2000, 65 (7):1915-1918.
[6] Menger F M, Lee C. Synthetically useful oxidations at solid sodium permanganate surfaces [ J ] . Tetrahedron Letters ,1981, 22(18): 1655-1656.
[7]  Sato K, Aoki M, Takagi J , et al. Organic solvent- and halide-free oxidation of alcohols with aqueous hydrogen peroxide [J]. Journal of the American Chemical Society,1997, 119(50): 12386-12387.
[8]  Abad A, Almela C, Corma A, et al. Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts[J]. Tetrahedron, 2006, 62(28): 6666-6672.
[9] Teng Y, Song L X, Wang L B, et al. Face-raised octahedral Co3O4nanocrystals and their catalytic activity in the selective oxidation of alcohols[J]. The Journal of Physical Chemistry C, 2014, 118(9): 4767-4773.
[10] Zhu J, Kailasam K, Fischer A, et al. Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase[J]. ACS Catalysis, 2011, 1(4): 342-347.
[11]  Kowal A, Port S N, Nichols R J. Nickel hydroxide electrocatalysts for alcohol oxidation reactions: An evalua- tion by infrared spectroscopy and electrochemical methods[J]. Catalysis Today, 1997, 38(4):483-492.
[12]  Li J, Li J, Wang H, et al. Electrocatalytic oxidation of n-propanol to produce propionic acid using an electro- catalytic membrane reactor[J]. Chemical Communications, 2013, 49(40): 4501-4503.
[13] Tian W J(田文杰)Wang H(王虹), Yin Z(尹振), et al.Preparation of nano-manganite loaded titanium electo- catalytic membrane for the catalytic oxidation of benzyl alcohol[J]. Acta Physico-ChimicaSinica(物理化学学报),2015, 31(8): 1567-1574.
[14]  Fang X, Yin Z, Wang H, et al. Controllable oxidation of cyclohexane to cyclohexanol and cyclohexanone by a nano-MnOx/Ti electrocatalytic membrane reactor[J]. Journal of Catalysis, 2015, 329: 187-194.
[15]  Wöltinger  J, Drauz K, Bommarius A S. The membrane reactor in the fine chemicals industry[J]. Applied Catalysis A: General, 2001, 221(1): 171-185.
[16] Ketchie W C, Fang Y L, Wong M S, et al. Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol[J]. Journal of Catalysis, 2007, 250(1): 94-101.
[17]  Wang H, Wang H, Li J, et al. An electrocatalytic reactor for the high selectivity production of sodium 2, 2, 3, 3-tetrafluoropropionate from 2, 2, 3, 3-tetrafluoro-1-propanol [J]. Electrochimica Acta, 2014, 123: 33-41.
[18] Niu D F(钮东方), Yu C K(俞程凯), Zhang X S(张新胜).Preparation of benzoquinone from phenol by electrooxidation[J]. Journal of Electrochemistry(电化学), 2013, 19(5): 477-481.
[19]  Liu H, Vecitis C D. Reactive transport mechanism for organic oxidation during electrochemical filtration: Mass-transfer , physical adsorption , and electron-transfer [J]. Journal of Physical Chemistry C, 2012, 116(1):374-383.
[20] Camara G A, Iwasita T. Parallel pathways of ethanol oxidation: The effect of ethanol concentration[J]. Journal of Electroanalytical Chemistry, 2005, 578(2): 315-321.
[21] Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts[J]. Science, 2006, 311(5759): 362-365.
[22] Dijksman A, Marino-González A, Payeras A M I, et al. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system[J]. Journal of the American Chemical Society,2001, 123(28): 6826-6833.

 

 
文章导航

/