氮掺杂碳片的模板诱导制备及其在超级电容器中的应用
收稿日期: 2017-04-12
修回日期: 2017-05-14
网络出版日期: 2017-10-28
基金资助
国家重点基础研究发展计划项目(973计划,2014CB239701)国家自然科学基金项目(21372155和21572132)资助
Template Induced Fabrication of Nitrogen Doped Carbon Sheets as Electrode Materials in Supercapacitors
Received date: 2017-04-12
Revised date: 2017-05-14
Online published: 2017-10-28
兼具有优良的导电能力,高的比表面积和极佳的化学/机械稳定性,具有二维形貌的纳米碳材料近年来逐渐成为超级电容器电极材料的研究热点. 我们在此首次报道一种模板诱导方法以制备具有规整片状形貌的氮掺杂碳材料. 我们将作为硬模板的片状镁铝双金属氢氧化物与熔融的邻苯二胺混合后加入三氯化铁催化剂,进而通过加热使邻苯二胺聚合并碳化,随后刻蚀除去其中的氧化物成分即可以得到具有规整六边形片状氮掺杂碳材料. 通过改变碳化时的温度,可以有效的调节利用该方法所得到的氮掺杂碳片的形貌、结构、石墨化程度、氮含量以及比表面积. 更重要的是这些氮掺杂碳片在用作超级电容器电极材料时体现出优异的电化学性能,在0.5 A·g-1的电流密度下其比容量可以达到290.0 F·g-1的. 在1 A·g-1的电流密度下经过10000周循环测试后,其容量仍然可以达到初始值83%.
黄涛 , 陶广智 , 杨重庆 , 鲁登 , 马列 , 吴东清 . 氮掺杂碳片的模板诱导制备及其在超级电容器中的应用[J]. 电化学, 2017 , 23(5) : 604 -609 . DOI: 10.13208/j.electrochem.170345
[1] Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5), 366-377.
[2] Dunn, B., Kamath, H., Tarascon, J. M. Electrical energy storage for the grid: a battery of choices [J]. Science, 2011, 334(6058), 928-935.
[3] Simon, P., Gogotsi, Y. Materials for electrochemical capacitors [J]. Nature Materials, 2008, 7(11), 845-854.
[4] Peng, X., Peng, L., Wu, C., Xie, Y. Two dimensional nanomaterials for flexible supercapacitors [J]. Chemical Society Reviews, 2014, 43(10), 3303-3323.
[5] Frackowiak, E., Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon, 2001, 39(6), 937-950.
[6] González, A., Goikolea, E., Barrena, J. A., Mysyk, R. Review on supercapacitors: technologies and materials [J]. Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206.
[7] Müller, E. A., Gubbins. K. E., Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces [J]. Carbon, 1998, 36(10), 1433-1438.
[8] Cote, L. J., Kim, F., Huang, J. Langmuir − blodgett assembly of graphite oxide single layers [J]. Journal of the American Chemical Society, 2009, 131(3), 1043-1049.
[9] Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P. K., Wang, H., Guo, J., Dai, H. N-doping of graphene through electrothermal reactions with ammonia [J]. Science, 2009, 324(5928), 768-771.
[10] Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L., Gong, J. R. Controllable N-doping of grapheme [J]. Nano Letters, 2010, 10(12), 4975-4980.
[11] Wang, C., Huang, Y., Pan, H., Jiang, J., Yang, X., Xu, Z., Tian, H., Han,S., Wu, D. Nitrogen-doped porous carbon/graphene aerogel with much enhanced capacitive behaviors [J]. Electrochimica Acta, 2016, 215, 100-107.
[12] Huang, T., Yang, C., Wang, X., Qiu, F., Jing, F., Jiang, J., Liu, R., Han, S., Wu, D. Sacrificial templating fabrication of hierarchically porous nitrogen‐doped carbon nanosheets as superior oxygen reduction electrocatalysts[J]. ChemNanoMat, 2017, 3(2), 130-134.
[13] Zhu, H., Wang, X., Liu, X., Yang, X. Integrated synthesis of poly (o-phenylenediamine) derived carbon materials for high performance supercapacitors [J]. Advanced Materials, 2012, 24(48), 6524-6529.
[14] Lu, Y., Zhang, F., Zhang, T., Leng, K., Zhang, L., Yang, X., Ma, Y., Huang, Y., Zhang, M., Chen, Y. Synthesis and supercapacitor gerformance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor [J]. Carbon, 2013, 63, 508-516.
[15] Lu, Y., Zhu, Z., Liu, Z. Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene [J]. Carbon, 2005, 43(2), 369-374.
[16] Jiang, B., Tian, C., Wang, L., Sun, L., Chen, C., Nong, X., Qiao, Y., Fu, H. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: simultaneous doping and reduction [J]. Applied Surface Science, 2012, 258(8), 3438-3443.
[17] Wen, Z., Wang, X., Mao, S., Bo, Z., Kim, H., Cui, S., Lu, G., Feng, X., Chen, J. Crumpled nitrogen‐doped graphene nanosheets with ultrahigh pore volume for high‐performance supercapacitor [J]. Advanced Materials, 2012, 24(41), 5610-5616.
/
〈 |
|
〉 |