欢迎访问《电化学(中英文)》期刊官方网站,今天是
超级电容器近期研究专辑(南京航空航天大学 张校刚教授主编)

水系锌离子电容器

  • 赵井文 ,
  • 李佳佳 ,
  • 韩鹏献 ,
  • 崔光磊
展开
  • 1. 中国科学院青岛生物能源与过程研究所,山东 青岛 266101; 2. 中国海洋大学,山东 青岛 266100

收稿日期: 2017-03-28

  修回日期: 2017-05-12

  网络出版日期: 2017-10-28

基金资助

国家自然科学基金项目(No. 21601195, 51625204, 21671196)、中国科学院青年创新促进会(No.2017253)、青岛市源头创新计划、青岛市储能行业科学研究智库联合基金及青岛市太阳能与储能技术重点实验室资助

An Aqueous Zn-Ion Capacitor

  • ZHAO Jing-wen ,
  • LI Jia-jia ,
  • HAN Peng-xian ,
  • CUI Guang-lei
Expand
  • 1.Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Qingdao 266101, China;2. Ocean University of China, Shandong Qingdao 266100, China

Received date: 2017-03-28

  Revised date: 2017-05-12

  Online published: 2017-10-28

摘要

本文首次提出了一种水系锌离子电容器的新型储能体系,其中以五氧化二钒(V2O5)为正极,具有高比表面积的活性炭(AC)为负极,以及三氟甲基磺酸锌(Zn(TfO)2)为电解质. X射线衍射(XRD)证明二价锌离子作为电荷载体,可以在五氧化二钒(V2O5)中进行可逆的嵌入与脱出. 该锌离子电容器的电位窗口可达1.4 V,具有良好的倍率特性及循环稳定性. 电流密度为1000 mA·g-1 时,电容器的比能量密度为4.5 Wh·kg-1,功率密度可达181 W·kg-1. 本工作为发展新型基于多价离子电化学电容器提供了新思路和新方法.

本文引用格式

赵井文 , 李佳佳 , 韩鹏献 , 崔光磊 . 水系锌离子电容器[J]. 电化学, 2017 , 23(5) : 581 -585 . DOI: 10.13208/j.electrochem.170344

Abstract

We first present a new aqueous zinc-ion (Zn-ion) capacitor based on vanadium pentoxide ( V2O5) cathode, activated carbon (AC) anode, and 2 mol·L-1 zinc trifluoromethanesulfonate (Zn(TfO)2) electrolyte. The Zn-ion capacitor possesses a wide electrochemical window of 1.4 V, good rate capability and cycling stability. The XRD data demonstrates that the Zn2+ ion serving as the charge carrier could be reversibly intercalated into the V2O5. This capacitor delivered a power density of 181 W·kg-1 and an energy density of 4.5 Wh·kg-1 at 1000 mA·g-1. This work may open up new opportunities for developing multivalent ion-based electrochemical capacitors.

参考文献

[1]   Atwater T B, Cygan P J, Leung F C. Man portable power needs of the 21st century - I. Applications for the dismounted soldier. II. Enhanced capabilities through the use of hybrid power sources[J]. Journal of Power Sources, 2000, 91(1): 27-36.

[2]   Lewandowski A, Galinski M. Practical and theoretical limits for electrochemical double-layer capacitors[J]. Journal of Power Sources, 2007, 173(2): 822-828.

[3]   Owusu K A, Qu L, Li J, et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors[J]. Nature Communications, 2017, 8: 14264-14274.

[4]   Burke A. Ultracapacitor technologies and application in hybrid and electric vehicles[J]. International Journal of Energy Research, 2010, 34(2): 133-151.

[5]   Sharma P, Bhatti T S. A review on electrochemical double-layer capacitors[J]. Energy Conversion and Management, 2010, 51(12): 2901-2912.

[6]   Hercule K M, Wei Q, Asare O K, et al. Interconnected nanorods-nanoflakes Li2Co2(MoO4)3 framwork structure with enhanced electrochemical properties for supercapacitors[J]. Advanced Energy Materials, 2015, 5(10): 1500060.

[7]   Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27.

[8]   Rudge A, Davey J, Raistrick, I, et al. Conducting polymer as active materials in electrochemical capacitors[J]. Journal of Power Sources, 1994, 47(1/2): 89-107.

[9]   Yu L P, Chen G Z. Redox electrode materials for supercapatteries[J]. Journal of Power Sources, 2016, 326: 604-612.

[10] Wang Y G, Xia Y Y. Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn2O4 system[J]. Journal of The Electrochemical Society, 2006, 153(2): A450-A454.

[11] Zhang Y, Yuan C, Ye K, et al. An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in λ-MnO2 positive electrode[J]. Electrochimica Acta, 2014, 148: 237-243.

[12] Park J H, Park O O. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes[J]. Journal of Power Sources, 2002, 111(1): 185-190.

[13] Jain A, Aravindan V, Jayaraman S, et al. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors[J]. Scientific Reports, 2013, 3.

 

[14] Chen Z, Augustyn V, Wen J, et al. High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites[J]. Advanced Materials, 2011, 23(6): 791-795.

[15] Dipan K, Brian D A, Victor D, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 119.

文章导航

/