欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Fe/N/C氧还原催化剂的热稳定性及活性位结构

  • 陈驰 ,
  • 赖愉姣 ,
  • 周志有 ,
  • 张新胜 ,
  • 孙世刚
展开
  • 1. 华东理工大学,化工学院,化学工程联合国家重点实验室,上海 200237; 2. 厦门大学,固体表面物理化学国家重点实验室,化学化工学院,福建厦门 361005

收稿日期: 2017-03-24

  修回日期: 2017-04-10

  网络出版日期: 2017-04-10

基金资助

国家自然科学基金项目(21373175和21621091)资助

Thermo-stability and active site structure of Fe/N/C electrocatalyst for oxygen reduction reaction

  • CHEN Chi ,
  • LAI Yu-jiao ,
  • ZHOU Zhi-you ,
  • ZHANG Xin-sheng ,
  • SUN Shi-gang
Expand
  • 1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; 2. State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2017-03-24

  Revised date: 2017-04-10

  Online published: 2017-04-10

摘要

研制高活性的Fe/N/C氧还原催化剂对于降低燃料电池成本、实现商业化应用有重要意义. 为了实现Fe/N/C催化剂的理性设计,需要深入研究其活性位结构. 本文我们发展一种研究活性位结构的新策略,即以预先合成好的聚间苯二胺基Fe/N/C催化剂(PmPDA-FeNx/C)为起始物,对其在1000~1500 oC高温下再次进行热处理并使其失活,通过关联催化剂热处理前后的结构变化与氧还原催化性能来揭示活性位结构. 实验结果表明,随着热处理温度升高,活性中心结构被破坏,铁原子析出团聚并形成纳米颗粒,氮元素挥发损失,导致催化剂失活. XPS分析显示,低结合能含氮物种的含量与催化剂的ORR活性呈良好的正相关性,表明活性中心很可能是由吡啶N和Fe-N物种构成的.

本文引用格式

陈驰 , 赖愉姣 , 周志有 , 张新胜 , 孙世刚 . Fe/N/C氧还原催化剂的热稳定性及活性位结构[J]. 电化学, 2017 , 23(4) : 400 -408 . DOI: 10.13208/j.electrochem.170324

Abstract

The development of Fe/N/C electrocatalyst for oxygen reduction reaction (ORR) is vital for the large-scale applications of proton exchange membrane fuel cells. Understanding the active site structure will contribute to the rational design of highly active catalysts. In this study, the as-prepared Fe/N/C catalyst based on poly-m-phenylenediamine (PmPDA-FeNx/C) catalyst with the high ORR activity was subjected to the high-temperature heat treatment again at 1000 ~1500 oC. The degradation of in the ORR activity of PmPDA-FeNx/C by with various heat treatments was correlated to the change of elemental compositions, chemical states and textural properties. As the temperature elevated, the Fe atoms aggregated to form nanoparticles, while the gaseous N-containing species volatilized and the amount of N contents decreased, resulting in the destruction of active sites. The XPS analysis revealed that the content of N species with low binding energy show good positive correlation with the ORR kinetic current of catalyst, demonstrating that the pyridinic N and Fe-N species are probably main components of active sites and contribute to the high ORR activity. This study provides a new strategy to investigate the nature of active centre.

参考文献

[1] Wang Y, Chen K S, Mishler J, et al. A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research[J]. Applied Energy, 2011, 88(4): 981-1007.

[2] Stephens I E L, Bondarenko A S, Grønbjerg U, et al. Understanding the Electrocatalysis of Oxygen Reduction on Platinum and Its Alloys[J]. Energy & Environmental Science, 2012, 5(5): 6744-6762.

[3] Wu G, Santandreu A, Kellogg W, et al. Carbon Nanocomposite Catalysts for Oxygen Reduction and Evolution Reactions: From Nitrogen Doping to Transition-Metal Addition[J]. Nano Energy, 2016, 29: 83-110.

[4] Shao M H, Chang Q W, Dodelet J P, et al. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction[J]. Chemical Reviews, 2016, 116(6): 3594-3657.

[5] Thorum M S, Hankett J M, Gewirth A A. Poisoning the Oxygen Reduction Reaction on Carbon-Supported Fe and Cu Electrocatalysts: Evidence for Metal-Centered Activity[J]. Journal of Physical Chemistry Letters, 2011, 2(4): 295-298.

[6] Li W M, Wu J, Higgins D C, et al. Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction[J]. ACS Catalysis, 2012, 2(12): 2761-2768.

[7] Duan J J, Chen S, Jaroniec M, et al. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes[J]. ACS Catalysis, 2015, 5(9): 5207-5234.

[8] Zhu Y S, Zhang B S, Liu X, et al. Unravelling the Structure of Electrocatalytically Active Fe-N Complexes in Carbon for the Oxygen Reduction Reaction[J]. Angewandte Chemie-International Edition, 2014, 53(40): 10673-10677.

[9] Ramaswamy N, Tylus U, Jia Q, et al. Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry[J]. Journal of the American Chemical Society, 2013, 135(41): 15443-15449.

[10] Zhou J G, Duchesne P N, Hu Y F, et al. Fe-N Bonding in a Carbon Nanotube-Graphene Complex for Oxygen Reduction: An XAS Study[J]. Physical Chemistry Chemical Physics, 2014, 16(30): 15787-15791.

[11] Liang W, Chen J X, Liu Y W, et al. Density-Functional-Theory Calculation Analysis of Active Sites for Four-Electron Reduction of O2 on Fe/N-Doped Graphene[J]. ACS Catalysis, 2014, 4(11): 4170-4177.

[12] Lefèvre M, Dodelet J P, Bertrand P. Molecular Oxygen Reduction in PEM Fuel Cells: Evidence for the Simultaneous Presence of Two Active Sites in Fe-Based Catalysts[J]. Journal of Physical Chemistry B, 2002, 106(34): 8705-8713.

[13] Kramm U I, Herranz J, Larouche N, et al. Structure of the Catalytic Sites in Fe/N/C-Catalysts for O2-Reduction in PEM Fuel Cells[J]. Physical Chemistry Chemical Physics, 2012, 14(33): 11673-11688.

[14] Kramm U I, Lefèvre M, Larouche N, et al. Correlations between Mass Activity and Physicochemical Properties of Fe/N/C Catalysts for the ORR in PEM Fuel Cell via 57Fe Mössbauer Spectroscopy and Other Techniques[J]. Journal of the American Chemical Society, 2014, 136(3): 978-985.

[15] Ferrandon M, Kropf A J, Myers D J, et al. Multitechnique Characterization of a Polyaniline-Iron-Carbon Oxygen Reduction Catalyst[J]. Journal of Physical Chemistry C, 2012, 116(30): 16001-16013.

[16] Zitolo A, Goellner V, Armel V, et al. Identification of Catalytic Sites for Oxygen Reduction in Iron- and Nitrogen-Doped Graphene Materials[J]. Nature Materials, 2015, 14(9): 937-944.

[17] Wang M Q, Yang W H, Wang H H, et al. Pyrolyzed Fe-N-C Composite as an Efficient Non-Precious Metal Catalyst for Oxygen Reduction Reaction in Acidic Medium[J]. ACS Catalysis, 2014, 4(11): 3928-3936.

[18] Zhang S M, Liu B, Chen S L. Synergistic Increase of Oxygen Reduction Favourable Fe-N Coordination Structures in a Ternary Hybrid of Carbon Nanospheres/Carbon Nanotubes/Graphene Sheets[J]. Physical Chemistry Chemical Physics, 2013, 15(42): 18482-18490.

[19] Wang Q, Zhou Z Y, Lai Y J, et al. Phenylenediamine-Based FeNx/C Catalyst with High Activity for Oxygen Reduction in Acid Medium and Its Active-Site Probing[J]. Journal of the American Chemical Society, 2014, 136(31): 10882-10885.

[20] Artyushkova K, Kiefer B, Halevi B, et al. Density Functional Theory Calculations of XPS Binding Energy Shift for Nitrogen-Containing Graphene-Like Structures[J]. Chemical Communications, 2013, 49(25): 2539-2541.

[21] Liu G, Li X G, Ganesan P, et al. Studies of Oxygen Reduction Reaction Active Sites and Stability of Nitrogen-Modified Carbon Composite Catalysts for PEM Fuel Cells[J]. Electrochimica Acta, 2010, 55(8): 2853-2858.

[22] Tylus U, Jia Q, Strickland K, et al. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems[J]. Journal of Physical Chemistry C, 2014, 118(17): 8999-9008.

文章导航

/