欢迎访问《电化学(中英文)》期刊官方网站,今天是
田昭武先生90大寿祝贺专辑(厦门大学 孙世刚 林昌健教授主编)

通过磁控溅射金属钛生长金红石型二氧化钛纳米片阵列应用于钙钛矿太阳能电池

  • 张 囡 ,
  • 叶美丹 ,
  • 温晓茹 ,
  • 林昌健
展开
  • 1. 厦门大学,固体表面物理化学国家重点实验室,化学化工学院化学系,福建 厦门361005;2. 厦门大学,生物仿生与软物质研究院,福建省柔性功能材料重点实验室,物理系,物理科学与技术学院,福建 厦门 361005

收稿日期: 2017-02-22

  修回日期: 2017-03-16

  网络出版日期: 2017-03-20

基金资助

The authors gratefully acknowledge the financial supports from the National Nature Science Foundation of China (21621091,21503177, 21321062), the National Basic Research Program of China (2012CB932900), the Fundamental Research Funds for the Central Universities of China (20720150031), and the project of 111 Program (B16029).

Rutile TiONanosheet Arrays Planted on Magnetron Sputtered Ti Metal Layers for Efficient Perovskite Solar Cells

  • Nang Zhang ,
  • Meidan Ye ,
  • Xiaoru Wen ,
  • Changjian Lin
Expand
  • 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China  2.Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005

Received date: 2017-02-22

  Revised date: 2017-03-16

  Online published: 2017-03-20

Supported by

The authors gratefully acknowledge the financial supports from the National Nature Science Foundation of China (21621091,21503177, 21321062), the National Basic Research Program of China (2012CB932900), the Fundamental Research Funds for the Central Universities of China (20720150031), and the project of 111 Program (B16029).

摘要

本文首次通过磁控溅射方法,在FTO表面溅射一层Ti金属层,结合水热反应,原位生长TiO2纳米片阵列(TiO2 NSAs). 经过退火处理,Ti金属层转变为致密的TiO2层,因此基于此方法制得的金红石型TiO2 NSAs与FTO基底具有很强的结合力. 与通过原子层沉积 (ALD) 以及悬涂 (SC) 法所得的另外两种TiO2致密层生长的TiO2 NSAs对比发现,基于本文所述方法制备的TiO2 NSAs作为支架层的钙钛矿太阳能电池具有最佳性能. 上述结果主要是由于该TiO2 NSAs无明显缺陷,并且在TiO2 NSAs/TiO2致密层/FTO界面接触很好. 值得注意的是,通过优化实验条件,基于此种TiO2 NSAs的钙钛矿太阳能电池的最高光电转换效率可达11.82%.

本文引用格式

张 囡 , 叶美丹 , 温晓茹 , 林昌健 . 通过磁控溅射金属钛生长金红石型二氧化钛纳米片阵列应用于钙钛矿太阳能电池[J]. 电化学, 2017 , 23(2) : 226 -237 . DOI: 10.13208/j.electrochem.161251

Abstract

In this work, vertical rutile titanium oxide (TiO2) nanosheet arrays (NSAs) were firstly hydrothermally grown on the top of thin titanium (Ti) metal layers which were loaded on fluorine doped tin oxide (FTO) substrates by the DF magnetron sputtering deposition method. After an annealing post-treatment, the Ti metal layers were transformed into the compact TiO2 layers with a strong connection between the rutile TiO2 NSAs and the FTO substrates. For comparison, the rutile TiO2 NSAs were similarly planted over two compact TiO2 layers fabricated through atomic layer deposition (ALD) and spin coating (SC) methods, respectively. When served as the scaffold layers in perovskite solar cells (PSCs), the Ti-based TiO2 NSAs showed the best cell performance due to the high quality of the TiO2 NSA nanostructure and excellent interface contacts among the TiO2 NSAs/TiO2 compact layers/FTO substrate interface. Significantly, a highest cell efficiency of 11.82% was obtained after careful modification on the organization procedures for the PSC devices.

参考文献

[1]          E. SerranoG. RusJ. García-Martínez. Nanotechnology for sustainable energy[J]. Renewable &Sustainable Energy Reviews, 2009, 13(9): 2373-2384.

[2]          Nam-Gyu Park. Perovskite solar cells: an emerging photovoltaic technology[J]. Materials Today, 2014, (0)

[3]          Michael Gratzel. The light and shade of perovskite solar cells[J]. Nature Materials, 2014, 13(9): 838-842.

[4]          Michael D. McGehee. Perovskite solar cells: Continuing to soar[J]. Nature Materials, 2014, 13(9): 845-846.

[5]          Gary HodesDavid Cahen. Photovoltaics: Perovskite cells roll forward[J]. Nature Photonics, 2014, 8(2): 87-88.

[6]          Martin A. GreenThomas Bein. PHOTOVOLTAICS Perovskite cells charge forward[J]. Nature Materials, 2015, 14(6): 559-561.

[7]          Nam-Gyu Park. PEROVSKITE SOLAR CELLS Switchable photovoltaics[J]. Nature Materials, 2015, 14(2): 140-141.

[8]          Martin A. GreenAnita Ho-BaillieHenry J. Snaith. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514.

[9]          Gary Hodes. Perovskite-Based Solar Cells[J]. Science, 2013, 342(6156): 317-318.

[10]        Akihiro KojimaKenjiro TeshimaYasuo Shiraiet al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.

[11]        Best research-cell efficiencies NREL (2016)[J]. Best research-cell efficiencies NREL (2016): www.nrel.gov/ncpv/images/efficiency_chart.jpg.

[12]        Kwan Wee TanDavid T. MooreMichael Salibaet al. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells[J]. ACS Nano, 2014, 8(5): 4730-4739.

[13]        Yehao DengEdwin PengYuchuan Shaoet al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy & Environmental Science, 2015, 8(5): 1544-1550.

[14]        Chunhung LawLukas MiseikisStiochko Dimitrovet al. Performance and Stability of Lead Perovskite/TiO2, Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns[J]. Advanced Materials, 2014, 26(36): 6268-6273.

[15]        Byung-wook ParkBertrand PhilippeTorbjorn Gustafssonet al. Enhanced Crystallinity in Organic-Inorganic Lead Halide Perovskites on Mesoporous TiO2 via Disorder-Order Phase Transition[J]. Chemistry of Materials, 2014, 26(15): 4466-4471.

[16]        Jeong-Hyeok ImJingshan LuoMarius Franckeviciuset al. Nanowire Perovskite Solar Cell[J]. Nano Letters, 2015, 15(3): 2120-2126.

[17]        Natalia YantaraDharani SabbaFang Yananet al. Loading of mesoporous titania films by CH3NH3PbI3 perovskite, single step vs. sequential deposition[J]. Chemical Communications, 2015, 51(22): 4603-4606.

[18]        Wallace CH Choy. Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar Cells[J]. ACS nano, 2015, 9(1): 639-646.

[19]        Dongqin BiAhmed M El-ZohryAnders Hagfeldtet al. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells[J]. ACS Photonics, 2015, 2: 589-594.

[20]        Taiyang ZhangMengjin YangYixin Zhaoet al. Controllable Sequential Deposition of Planar CH3NH3PbI3 Perovskite Films via Adjustable Volume Expansion[J]. Nano Letters, 2015, 15(6): 3959-63.

[21]        Bing CaiYedi XingZhou Yanget al. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy & Environmental Science, 2013, 6(5): 1480-1485.

[22]        Tomas LeijtensGiles E. EperonSandeep Pathaket al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4: 2885.

[23]        Thomas MoehlJeong Hyeok ImYong Hui Leeet al. Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO2 Blocking Layer under Reverse Bias[J]. The Journal of  Physical Chemistry Letters, 2014, 5(21): 3931-3936.

[24]        Ajay Kumar JenaHsin-Wei ChenAtsushi Kogoet al. The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells[J]. Acs Applied Materials & Interfaces, 2015, 7(18): 9817-9823.

[25]        Belen SuarezVictoria Gonzalez-PedroTeresa S. Ripolleset al. Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1628-1635.

[26]        Dongqin BiSoo-Jin MoonLeif Haggmanet al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. Rsc Advances, 2013, 3(41): 18762-18766.

[27]        Junyan XiaoJiangjian ShiHuibiao Liuet al. Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)-Modified P3HT Hole-Transporting Material[J]. Advanced Energy Materials, 2015, 5(8): 1401943.

[28]        Jin Hyuck HeoSang Hyuk ImJun Hong Nohet al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7(6): 487-492.

[29]        Agnese AbrusciSamuel D. StranksPablo Docampoet al. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers[J]. Nano Letters, 2013, 13(7): 3124-3128.

[30]        Jun-Yuan JengYi-Fang ChiangMu-Huan Leeet al. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells[J]. Advanced Materials, 2013, 25(27): 3727-3732.

[31]        Chaoyang KuangGang TangTonggang Jiuet al. Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells[J]. Nano Letters, 2015, 15(4): 2756-2762.

[32]        Nevena MarinovaWolfgang TressRobin Humphry-Bakeret al. Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation[J]. ACS nano, 2015, 9(4): 4200-4209.

[33]        Hamed AzimiTayebeh AmeriHong Zhanget al. A Universal Interface Layer Based on an AmineFunctionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells[J]. Advanced Energy Materials, 2015, 5(8): 1401692.

[34]        Hui-Seon KimChang-Ryul LeeJeong-Hyeok Imet al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Scientific Reports, 2012, 2: 591-598.

[35]        Mingzhen LiuMichael B. JohnstonHenry J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.

[36]        Shaowei ShiYongfang LiXiaoyu Liet al. Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites[J]. Materials Horizons, 2015, 2,378-405

[37]        Woon Seok YangJun Hong NohNam Joong Jeonet al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237.

[38]        Yaoming XiaoGaoyi HanYanping Liet al. Preparation of high performance perovskite-sensitized nanoporous titanium dioxide photoanodes by in situ method for use in perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(39): 16531-16537.

[39]        Yaoming XiaoGaoyi HanYunzhen Changet al. Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells[J]. Journal of Power Sources, 2015, 286: 118-123.

[40]        Peng QinSoichiro TanakaSeigo Itoet al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nature Communications, 2014, 5

[41]        Francesco Di GiacomoValerio ZardettoAlessandra D'Epifanioet al. Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates[J]. Advanced Energy Materials, 2015, 5(8): 1401808.

[42]        Yongzhen WuXudong YangHan Chenet al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells[J]. Applied Physics Express, 2014, 7(5): 052301.

[43]        Qianqian GaoSongwang YangLei Leiet al. An Effective TiO2 Blocking Layer for Perovskite Solar Cells with Enhanced Performance[J]. Chemistry Letters, 2015, 44(5): 624-626.

[44]        Sang Do SungMin Soo KangIn Taek Choiet al. 14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials[J]. Chemical Communications, 2014, 50(91): 14161-14163.

[45]        Thirumal KrishnamoorthyFu KunwuPablo P. Boixet al. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(18): 6305-6309.

[46]        Kwangseok DoHyeju ChoiKimin Limet al. Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells[J]. Chemical Communications, 2014, 50(75): 10971-10974.

[47]        Peng QinNicolas TetreaultM. Ibrahim Daret al. A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2014, 5(2): 1400980.

[48]        Zonglong ZhuYang BaiHarrison Ka Hin Leeet al. Polyfluorene Derivatives are High-Performance Organic Hole-Transporting Materials for Inorganic−Organic Hybrid Perovskite Solar Cells[J]. Advanced Functional Materials, 2014, 24(46): 7357-7365.

[49]        Nianqing FuChun HuangYan Liuet al. Organic-free Anatase TiO2 Paste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells[J]. ACS Applied Material & Interfaces, 2015, 7(34): 19431-19438.

[50]        Hui-Seon KimJin-Wook LeeNatalia Yantaraet al. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer[J]. Nano Letters, 2013, 13(6): 2412-2417.

[51]        Jianhang QiuYongcai QiuKeyou Yanet al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays[J]. Nanoscale, 2013, 5(8): 3245-3248.

[52]        Qinglong JiangXia ShengYingxuan Liet al. Rutile TiO2 nanowire-based perovskite solar cells[J]. Chemical Communications, 2014, 50(94): 14720-14723.

[53]        Zhong D Cai B, Yang Z, Huang B, Miao S, Zhang W-H, Qiu J, Li C. An acid-free medium growth of rutile TiO2 nanorods arrays and their application in perovskite solar cells[J]. Journal of Materials Chemistry C, 2015, 3(4): 729-733.

[54]        Azhar FakharuddinFrancesco Di GiacomoIrfan Ahmedet al. Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells[J]. Journal of Power Sources, 2015, 283: 61-67.

[55]        Sawanta S. MaliChang Su ShimHui Kyung Parket al. Ultrathin Atomic Layer Deposited TiO2 for Surface Passivation of Hydrothermally Grown 1D TiO2 Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells[J]. Chemical Materials, 2015, 27(5): 1541-1551.

[56]        Cai B Zhong D, Wang X, et al. Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells[J]. Nano Energy, 2015, 11: 409-418.

[57]        Bing CaiDong ZhongZhou Yanget al. An acid-free medium growth of rutile TiO2 nanorods arrays and their application in perovskite solar cells[J]. Journal of Materials Chemistry C, 2015, 3(4): 729-733.

[58]        Xianfeng GaoJianyang LiJoel Bakeret al. Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films[J]. Chemical Communications, 2014, 50(48): 6368-6371.

[59]        Xiaoyan WangZhen LiWenjing Xuet al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode[J]. Nano Energy, 2015, 11: 728-735.

[60]        Sabba DharaniHemant Kumar MulmudiNatalia Yantaraet al. High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell[J]. Nanoscale, 2014, 6(3): 1675-1679.

[61]        Dong ZhongBing CaiXiuli Wanget al. Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells[J]. Nano Energy, 2015, 11: 409-418.

[62]        Yaoguang RongZhiliang KuAnyi Meiet al. Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes[J]. The Journal of Physical Chemistry Letters, 2014, 5(12): 2160-2164.

[63]        M. Ibrahim DarF. Javier RamosZhaosheng Xueet al. Photoanode Based on (001)-Oriented Anatase Nanoplatelets for Organic-Inorganic Lead Iodide Perovskite Solar Cell[J]. Chemistry of Materials, 2014, 26(16): 4675-4678.

[64]        Jin-Wook LeeSeung Hee LeeHyun-Seok Koet al. Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI 3 perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3: 9179-9186.

[65]        WuQiang WuFuzhi HuangDehong Chenet al. Thin Films of Dendritic Anatase Titania Nanowires Enable Effective HoleBlocking and Efficient LightHarvesting for HighPerformance Mesoscopic Perovskite Solar Cells[J]. Advanced Functinal Materials, 2015, 25: 3264-3272.

[66]        Hongxia SunPeng RuanZhongqiu Baoet al. Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells[J]. Solid State Sciences, 2015, 40: 60-66.

[67]        Khalid MahmoodBhabani Sankar SwainAram Amassian. Highly Efficient Hybrid Photovoltaics Based on Hyperbranched Three-Dimensional TiO2 Electron Transporting Materials[J]. Advanced Materials, 2015, 27(18): 2859-2865.

[68]        Y. Z. WuX. D. YangH. Chenet al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells[J]. Applied Physics Express, 2014, 7(5): 4.

文章导航

/