欢迎访问《电化学(中英文)》期刊官方网站,今天是
田昭武先生90大寿祝贺专辑(厦门大学 孙世刚 林昌健教授主编)

用于电化学水氧化的铁、镍、钴金属及其二元金属纳米颗粒比较研究

  • Maduraiveeran Govindhan ,
  • Brennan Mao ,
  • 陈爱成
展开
  • 加拿大湖首大学化学系, 桑德贝, 安大略 P7B 5E1

收稿日期: 2016-12-02

  修回日期: 2017-03-21

  网络出版日期: 2017-03-22

基金资助

This research was supported by the Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN-2015-06248). A. Chen acknowledges NSERC and the Canada Foundation for Innovation (CFI) for the Canada Research Chair Award in Materials and Environmental Chemistry.

Comparative Studies of Fe, Ni, Co and Their Bimetallic Nanoparticles for Electrochemical Water Oxidation

  • Maduraiveeran Govindhan ,
  • Brennan Mao ,
  • Aicheng Chen
Expand
  • Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada

Received date: 2016-12-02

  Revised date: 2017-03-21

  Online published: 2017-03-22

Supported by

This research was supported by the Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN-2015-06248). A. Chen acknowledges NSERC and the Canada Foundation for Innovation (CFI) for the Canada Research Chair Award in Materials and Environmental Chemistry.

摘要

从环境兼容角度来设计应用于氧析出反应的电催化剂是否有效、耐用和廉价对能源转化过程至关重要. 本文报告了一种快速制备低成本、原料丰富的金属催化剂制备方法。通过一步电化学沉积法在钛金属基材上制备了铁、镍、钴金属及其钴镍、钴铁二元金属纳米颗粒. 采用场发射电子显微镜 (FE-SEM), 能量散射X-射线能谱 (EDX), X-射线衍射光谱 (XRD), X-射线光电子能谱 (XPS)和电化学技术对制备的不同纳米颗粒进行了表征. 电化学结果显示,在合成的五种钛基金属纳米催化剂中, 钛基上沉积钴金属纳米颗粒(Ti/Co)电极在0.l mol·L-1氢氧化钾溶液中氧析出反应的电催化活性最好,0.70 V(相对于银/氯化银电极)的电流密度为10.0 mA·cm-2. 经优化后Ti/Co电极的过电位)很小,当电流密度为10.0 mA·cm-2η为0.43 V,质量活性高达105.7 A·g-1,逆转频率(TOF)值为1.63×10-3 s-1, 这些与当前最好的碳载铂(Pt/C)和氧化钌(RuO2)电催化剂的性能相当. 此外,通过计时电位技术对优化后Ti/Co电极的耐久性进行了测试, 发现该电极在碱性溶液中氧析出反应的稳定性良好. 本工作制备的钛金属基材上电化学沉积金属钴纳米颗粒具有高催化活性、高稳定性、原料来源丰富、廉价且易于大规模生产,在工业化水分解领域具有潜在的应用前景.

本文引用格式

Maduraiveeran Govindhan , Brennan Mao , 陈爱成 . 用于电化学水氧化的铁、镍、钴金属及其二元金属纳米颗粒比较研究[J]. 电化学, 2017 , 23(2) : 159 -169 . DOI: 10.13208/j.electrochem.161247

Abstract

The design of efficient, durable, and earth-abundant electrocatalysts via environmentally compatible strategies for the oxygen evolution reaction (OER) is a vital for energy conversion processes. Herein we report a facile approach for the fabrication of low-cost and earth abundant metal catalysts, including iron (Fe), nickel (Ni), cobalt (Co), CoNi, and CoFe nanoparticles (NPs) on titanium (Ti) substrates through a one-step electrochemical deposition. Field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) spectrocopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were employed to characterize these nanoparticles. Our electrochemical results revealed that among the five synthesized nanomaterials, the Ti/Co electrode exhibited the highest electrocatalytic activity toward OER in 0.l mol·L-1 KOH with a current density of 10.0 mA·cm-2 at 0.70 V vs. Ag/AgCl. The optimized Ti/Co electrode exhibited a small overpotential (η) of 0.43 V at 10.0 mA·cm-2 and a high mass activity of 105.7 A·g-1 with a turnover frequency (TOF) value of 1.63×10-3 s-1, which are comparable to the values obtained with the state-of-the-art Pt/C and RuO2 electrocatalysts. In addition, the durability of the optimized Ti/Co electrode was tested using a chronopotentiometric technique, which revealed that the developed electrocatalyst possessed good stability for OER in an alkaline solution. The high catalytic activity, high stability, earth abundance, cost-effectiveness, and easy scale-up for mass production make the Co nanoparticles, which were electrochemically deposited on a Ti substrate, promising for industrial water splitting

参考文献

[1]      Govindhan M, Chen A. Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting[J]. Nanoscale, 2016, 8(3): 1485-1492.

 

[2]      Katsounaros I, Cherevko S, Zeradjanin A R, et al. Oxygen electrochemistry as a cornerstone for sustainable energy conversion[J]. Angewante Chemie International Edition, 2014, 53: 102 – 121.

 

[3]      Liu Y L, Chen C C, Zhang N, et al. Research and application of key materials for sodium-ion batteries[J]. Journal of Electrochemistry, 2016, 22(5): 437-452.

 

 [4]    Pe´rez-Alonso F J, Ada´n C, Rojas S, et al. Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium[J]. International Journal of Hydrogen Energy 2014, 39: 5204-5212.

 

[5]      LeRoy R L, Stuart A K, Srinivasan S, et al. Ed: Industrial water electrolysis[B], The Electrochemical Society, (1978) p. 117.

 

[6]      Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells[J]. Chemical Review, 2010, 110: 6446-6473.

 

[7]      Pu Z, Luo Y, Asiri A M, et al. Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film[J]. ACS Applied Materials Interfaces, 2016, 8(7): 4718-4723.

 

[8]      Bian W, Yang Z, Strasser P, et al. A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution[J]. Journal of Power Sources, 2014, 250: 196-203.

 

[9]      Chen X. Mini-review: possible applications of scanning electrochemical microscopy (SECM) in characterizations of oxygen reduction reaction and oxygen evolution reaction[J]. Journal of Electrochemistry, 2016, 22(2): 113-122.

 

[10]    Chao S, Geng M. 3,5-Diamino-1,2,4-triazole as a nitrogen precursor to synthesize highly efficient Co-N/C non-precious metal bifunctional catalyst for oxygen reduction reaction and oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2016, 41(30): 12995-13004.

 

[11]    Jiao F, Frei H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts[J]. Angewante Chemie International Edition, 2009, 48: 1841-1844.

 

[12]    Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+[J]. Science 2008, 321(5892): 1072-1075.

 

[13]    Chen S, Thind S S, Chen A. Nanostructured materials for water splitting - state of the art and future needs: A mini-review[J], Electrochemistry Communications 2016, 63: 10–17.

 

[14]    McCrory C C L, Jung S, Ferrer I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J], Journal of American Chemical Society 2015, 137(13): 4347-4357.

 

 [15] Gao M -R, Cao X, Gao Q, et al. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation[J]. ACS Nano, 2014, 8(4): 3970–3978.

 

[16]    Yang T, Dong W, Yang H, et al. Preparation and properties of binary oxides CoxCr1-xO3/2 electrocatalysts for oxygen evolution reaction[J]. Journal of Electrochemistry, 2015, 21(2): 187-192.

 

[17]    Wang L, Lin C, Huang D, et al. A comparative study of composition and morphology effect of NixCo1–x(OH)2 on oxygen evolution/reduction reaction[J]. ACS Applied Materials Interfaces 2014, 6(13): 10172-10180.

 

[18]     Chemelewski W D, Lee H -C, Lin J -F, et al. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting[J]. Journal of American Chemical Society, 2014, 136(7): 2843-2850.

 

[19]     Huang J, Xu Z, Li H, et al. Electrochemical studies of iron-doped nickel oxide electrode for oxygen evolution reaction[J]. Journal of Electrochemistry, 2006, 12(02): 154-158.

 

[20]     Yeo B S, Bell A T, Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen[J]. Journal of American Chemical Society, 2011, 133: 5587-5593.

 

[21]    Ling C, Zhou L Q, Jia H, First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst[J]. RSC Advances, 2014, 4: 24692-24697.

 

[22]    Wang J, Qiu T, Chen X, et al. Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium[J]. Journal of Power Sources 2014, 268: 341-348.

 

[23]     Doyle R L, Lyons M E G, Redox and Oxygen evolution electrocatalytic properties of Nafion and single-walled carbon nanotube/hydrous iron oxide composite films[J]. Electrocatalysis 2014, 5(4): 114-124.

 

[24]     Mellsop S R, Gardiner A, Marshall A.T, et al. Electrocatalytic oxygen evolution on electrochemically deposited cobalt oxide films: comparison with thermally deposited films and effect of thermal treatment[J]. Electrocatalysis, 2015, 5(4): 445-455.

 

[25]    Suryanto B H R, Lu X, Zhao C, Layer-by-layer assembly of transparent amorphous Co3O4 nanoparticles/graphene composite electrodes for sustained oxygen evolution reaction[J]. Journal of Material Chemistry A, 2013, 1: 12726-12731.

 

[26]     Zhou X, Xia Z, Zhang Z, et al. One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH)2 nanoplate composite as efficient catalysts for water oxidation[J]. Journal of Material Chemistry A, 2014, 2: 11799-11806.

 

[27]     Chen A, Chatterjee S, Nanomaterials based electrochemical sensors for biomedical applications[J]. Chemical Society Reviews 2013, 42: 5425-5438.

 

[28]     Adhikari B R, Govindhan M, Chen A, Sensitive detection of acetaminophen with graphene-based electrochemical sensor[J], Electrochimica Acta, 2015, 162:198-204.

 

[29]    Govindhan M, Chen A, Simultaneous synthesis of gold nanoparticle/graphene nanocomposite for enhanced oxygen reduction reaction[J]. Journal of Power Sources 2015, 274: 928-936.

 

[30]     Yao Y, Xu C, Qin J, et al. Synthesis of Magnetic Cobalt Nanoparticles Anchored on Graphene Nanosheets and Catalytic Decomposition of Orange II[J], Industrial Engineering Chemistry Research, 2013, 52(49): 17341-17350.

 

[31]    Chen A, Russa D J L, Miller B, Effect of the Iridium Oxide Thin Film on the Electrochemical Activity of Platinum Nanoparticles[J], Langmuir, 2004, 20: 9695-9702.

 

[32]     Lyons M E G, Brandon M P A, Comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base[J]. Journal of Electroanalytical Chemistry, 2010, 641(1-2): 119-130.

 

[33]    Han A, Chen H L, Sun Z. J, et al. High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors[J]. Chemical Communications 2015, 51: 11626-11629.

 

[34]    Liu M, Li J, Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen[J]. ACS Applied Materials Interfaces, 2016, 8(3): 2158-2165.

 

[35]    Li X, Han G Q, Liu Y. R, et al. NiSe@NiOOH core−shell hyacinth-like nanostructures on nickel foam synthesized by in situ electrochemical oxidation as an efficient electrocatalyst for the oxygen evolution reaction[J]. ACS Applied Materials Interfaces, 2016, 8(31): 20057-20066.

 

[36]    Kauffman D R, Alfonso D, Tafen, D N, et al. Electrocatalytic oxygen evolution with an atomically precise nickel catalyst[J]. ACS Catalysis, 2016, 6(2): 1225-1234.

 

[37]    Lu A, Peng D L, Chang F, et al. Composition- and structure-tunable gold–cobalt nanoparticles and electrocatalytic synergy for oxygen evolution reaction[J]. ACS Applied Materials Interfaces, 2016, 8(31): 20082-20091.

文章导航

/