欢迎访问《电化学(中英文)》期刊官方网站,今天是
有机电化学及电化学工业近期研究专辑(华东理工大学张新胜教授、北京化工大学曾程初教授主编)

离子液体负载的TEMPO/离子液体聚合物/碳黑三元复合材料在醇的电化学氧化中的应用

  • 林鑫 ,
  • 孙草草 ,
  • 刘峙嵘 ,
  • 曾程初
展开
  • 1. 化生材学院,东华理工大学,江西,330013; 2. 生命科学与生物工程学院,北京工业大学,北京,100124

收稿日期: 2016-11-15

  修回日期: 2017-02-13

  网络出版日期: 2017-03-02

基金资助

国家自然科学基金项目(21272021)资助

Ionic Liquid-Supported TEMPO/Polymeric Ionic-liquid/Carbon Black Ternary Composites: Preparations and Applications in Electrochemical Oxidation of Alcohols

  • LIN Xin ,
  • SUN Cao-cao ,
  • LIU Zhi-rong ,
  • ZENG Cheng-chu
Expand
  • 1. School of Chemistry, biology & Materials Science, East China University of Technology, Nanchang 330013 2. Collage of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124

Received date: 2016-11-15

  Revised date: 2017-02-13

  Online published: 2017-03-02

摘要

以4-羟基-2,2,6,6-四甲基哌啶氧基自由基(4-OH-TEMPO)为原料合成了负载有TEMPO结构单元的咪唑四氟硼酸盐离子液体 (TEMPO-IL-BF4),以双三氟甲磺酰亚胺锂 (LiTFSI) 和聚二烯丙基二甲基氯化铵 (PDDA) 为原料合成了聚合物离子液体 PDDA(Tf2N),将上述两种物质和碳黑(CB)按照一定比例制备得到一种三元复合材料. 以此三元复合材料为支持电解质和电催化剂,研究了其在乙腈溶液中电化学氧化对甲氧基苯甲醇等各类醇的能力及其循环使用效果. 结果表明:在电化学条件下,此三元复合材料不仅可以有效地氧化对甲氧基苯甲醇等各类醇,生成的醛的产率都在80%以上,并且经过4次循环使用,该三元复合材料的回收率均在95%以上.

本文引用格式

林鑫 , 孙草草 , 刘峙嵘 , 曾程初 . 离子液体负载的TEMPO/离子液体聚合物/碳黑三元复合材料在醇的电化学氧化中的应用[J]. 电化学, 2017 , 23(3) : 322 -326 . DOI: 10.13208/j.electrochem.161051

Abstract

To effectively recover redox catalyst and supporting electrolyte, a novel ternary composite consisting of ionic liquid-supported TEMPO, polymeric ionic-liquid and carbon black was prepared. The ionic-liquid supported redox catalyst TEMPO-IL-BF4 was firstly synthesized from 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and followed by the reaction of polydimethyldiallylammonium chloride (PDDA) and bis(trifluoromethane)sulfonimide lithium salt (LiTFSI) to form poly[diallyldimethylammonium bis(trifluoromethanesulfonyl)imide] (PDDA(Tf2N)). A combination of the above mentioned two synthesized materials and carbon black afforded to obtain the ternary composite, which was used as the recoverable supporting electrolyte and mediator for the electrochemical oxidation of alcohol. The results indicate that various alcohols could be oxidized efficiently to the corresponding aldehydes or ketones with the more than 80% yields in the presence of the ternary composite under electrochemical conditions. In addition, the composite could be recovered with 95% recovery after being used for 4 times in experiments. The development of the ternary composite provides an efficient and sustainable approach for the recovery of supporting electrolyte and redox catalyst.

参考文献

[1] Ma C A (马淳安). Introduction of organic electrochemistry (有机电化学合成导论)[M]. Beijing: Science Publisher, 2002, 5-6.

[2] Huang P Q (黄培强). Green synthesis: an emerging frontier in organic synthesis[J]. Progress in Chemistry (化学进展), 1998, 10: 265-272.

[3] Yoo S J, Li L J, Zeng C C, et al. Polymeric ionic liquid and carbon black composite as a reusable supporting electrolyte: modification of the electrode surface[J]. Angewandte Chemie International Edition, 2015, 54(12): 3744-3747.

[4] Dijksman A, Marino-González A, Mairata i Payeras A., et al. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system[J]. Journal of the American Chemical Society, 2001, 123(28): 6826–6833.

[5] Rohlmann R, Stopka T, Richter H, et al. Iron-catalyzed oxidative tandem reactions with TEMPO oxoammonium salts: synthesis of dihydroquinazolines and quinolones[J]. The Journal of Organic Chemistry, 2013, 78(12): 6050-6064.

[6] Qian W X, Jin E L, Bao W L, et al. Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water[J]. Tetrahedron, 2006, 62 (4): 556–562.

[7] Mitsui M, Takeda K, Kobori Y, et al. Unusually large dynamic electron polarization in an O2(1Δg)−2,2,6,6-Tetramethylpiperidine-1-oxyl radical system[J]. The Journal of Physical Chemistry, 2004, 108(7): 1120-1126.

[8] Mehnert C P, Cook R A, Dispenziere N C, et al. Supported ionic liquid catalysis - a new concept for homogeneous hydroformylation catalysis[J]. Journal of the American Chemical Society, 2002, 124(44):  12932-12933.

[9] Miao W S, Chan T H. Ionic-liquid-supported peptide synthesis demonstrated by the synthesis of leu(5)-enkephalin[J]. The Journal of Organic Chemistry, 2005, 70(8): 3251-3255.

[10] Grotli M, Gotfredsen C H, Rademann J, et al. Physical properties of poly(ethylene glycol) (PEG)-based resins for combinatorial solid phase organic chemistry: a comparison of PEG-cross-linked and PEG-grafted resins[J]. Journal of Combinatorial Chemistry, 2000, 2(2): 108-119.

[11] Sun Q (孙茜), Liu Y L (刘元兰), Lu J X (陆嘉星). Application of ionic liquids in electrochemistry[J]. Chemistry Bulletin (化学通报), 2003, 66(2): 112-114.

[12] Zhu Y G, Zhu Y, Zeng H Y, et al. A promising electro-oxidation of methyl-substituted aromatic compounds to aldehydes in aqueous imidazole ionic liquid solutions[J]. Journal of Electroanalytical Chemistry, 2015, 751: 105-110.

[13] Yuan Y, Shi X, Liu W. Transition metal-free chemoselective aerobic oxidations of sulfides and alcohols with potassium nitrate and pyridinium tribromide or bromine[J]. Synlett, 2011, 4: 559-564.

[14] Cacchi S, Fabrizi G., Goggiamani A. Palladium-catalyzed synthesis of aldehydes from aryl iodides and acetic formic anhydride[J]. Journal of Combinatorial Chemistry, 2004, 6(5): 692–694.

文章导航

/