离子液体负载的TEMPO/离子液体聚合物/碳黑三元复合材料在醇的电化学氧化中的应用
收稿日期: 2016-11-15
修回日期: 2017-02-13
网络出版日期: 2017-03-02
基金资助
国家自然科学基金项目(21272021)资助
Ionic Liquid-Supported TEMPO/Polymeric Ionic-liquid/Carbon Black Ternary Composites: Preparations and Applications in Electrochemical Oxidation of Alcohols
Received date: 2016-11-15
Revised date: 2017-02-13
Online published: 2017-03-02
以4-羟基-2,2,6,6-四甲基哌啶氧基自由基(4-OH-TEMPO)为原料合成了负载有TEMPO结构单元的咪唑四氟硼酸盐离子液体 (TEMPO-IL-BF4),以双三氟甲磺酰亚胺锂 (LiTFSI) 和聚二烯丙基二甲基氯化铵 (PDDA) 为原料合成了聚合物离子液体 PDDA(Tf2N),将上述两种物质和碳黑(CB)按照一定比例制备得到一种三元复合材料. 以此三元复合材料为支持电解质和电催化剂,研究了其在乙腈溶液中电化学氧化对甲氧基苯甲醇等各类醇的能力及其循环使用效果. 结果表明:在电化学条件下,此三元复合材料不仅可以有效地氧化对甲氧基苯甲醇等各类醇,生成的醛的产率都在80%以上,并且经过4次循环使用,该三元复合材料的回收率均在95%以上.
关键词: 离子液体负载的TEMPO电催化剂; 聚合物支持电解质; 可回收的三元复合材料
林鑫 , 孙草草 , 刘峙嵘 , 曾程初 . 离子液体负载的TEMPO/离子液体聚合物/碳黑三元复合材料在醇的电化学氧化中的应用[J]. 电化学, 2017 , 23(3) : 322 -326 . DOI: 10.13208/j.electrochem.161051
To effectively recover redox catalyst and supporting electrolyte, a novel ternary composite consisting of ionic liquid-supported TEMPO, polymeric ionic-liquid and carbon black was prepared. The ionic-liquid supported redox catalyst TEMPO-IL-BF4 was firstly synthesized from 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and followed by the reaction of polydimethyldiallylammonium chloride (PDDA) and bis(trifluoromethane)sulfonimide lithium salt (LiTFSI) to form poly[diallyldimethylammonium bis(trifluoromethanesulfonyl)imide] (PDDA(Tf2N)). A combination of the above mentioned two synthesized materials and carbon black afforded to obtain the ternary composite, which was used as the recoverable supporting electrolyte and mediator for the electrochemical oxidation of alcohol. The results indicate that various alcohols could be oxidized efficiently to the corresponding aldehydes or ketones with the more than 80% yields in the presence of the ternary composite under electrochemical conditions. In addition, the composite could be recovered with 95% recovery after being used for 4 times in experiments. The development of the ternary composite provides an efficient and sustainable approach for the recovery of supporting electrolyte and redox catalyst.
/
〈 |
|
〉 |