欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

纤维素微孔锂电隔膜的制备及性能研究

  • 罗化峰 ,
  • 乔元栋
展开
  • 山西大同大学煤炭工程学院矿业工程系, 山西 大同 037003

收稿日期: 2016-07-23

  修回日期: 2017-03-22

  网络出版日期: 2017-10-28

基金资助

大同市科技资助项目(201316);山西省科技资助项目(20140321003-05)资助

Preparation and Characterization of Cellulose Acetate-based Separator for Lithium-ion batteries

  • LUO Hua-feng ,
  • QIAO Yuan-dong
Expand
  • Coal Engineering College, Shanxi Datong University, Datong 037003, Shanxi, China

Received date: 2016-07-23

  Revised date: 2017-03-22

  Online published: 2017-10-28

摘要

为了改善锂电隔膜的亲液性和耐高温性,以醋酸纤维素为成膜材料,利用相转化法制备了新型锂电隔膜,通过形貌和孔道结构表征、亲液性能和耐热性能测试对醋酸纤维素隔膜的基本性能进行研究,并将该隔膜装配成锂离子电池进行充放电性能测试. 结果表明,醋酸纤维素隔膜具有均匀的微孔结构,孔隙率达到65%,约为传统聚烯烃隔膜的1.5倍;纤维素材料的良好亲液性和高孔隙率结构改善了隔膜的吸液性能,其吸液率达到285%;该隔膜在150 oC、30 min的热处理条件下未发生明显的热收缩. 鉴于上述优点,相对于市售PE隔膜,醋酸纤维素隔膜所装配锂离子电池显示出更优的循环性能和倍率性能.

本文引用格式

罗化峰 , 乔元栋 . 纤维素微孔锂电隔膜的制备及性能研究[J]. 电化学, 2017 , 23(5) : 610 -616 . DOI: 10.13208/j.electrochem.160723

Abstract

To improve the electrolyte wettability and thermal resistance of separators used for lithium-ion battery, a novel cellulose acetate (CA)-based separator is facilely prepared by non-solvent induced phase separation (NIPS) wet-process and investigated in lithium-ion batteries. Systematical investigations including morphological characterization, electrolyte wettability and thermal resistance testing were carried out. The results demonstrated that the CA-based separator exhibited well developed three-dimensional porous structures with porosity up to 65%, which is 1.5 times higher than that of PE separator. The CA separator also showed excellent electrolyte uptake (285%) and thermal stability at 150 oC for 30 min. Compared with the commercial PE separator, the CA separator exhibited better electrochemical performances, achieving superior discharge C-rate capability and cycling performance.

参考文献

[1] Arora P, Zhang Z M. Battery Separators [J]. Chem. Rev., 2004, 104(10): 4419-4462.

[2] Thackeray M M, Wolverton C, Isaacs C D. Electrical energy storage for transportation approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy & Environmental Science, 2012, 5(1): 7854-7863.

[3] Wang C (王畅), Wu D Y (吴大勇). LIB separators and the recent technical progress [J]. Energy Storage Science and Technology (储能科学与技术), 2016, 5(2): 120-128.

[4] Bai L (白莉), Huai Y J (怀永建), et al. Characterization of the separator with thermal-shutdown layer for use in lithium batteries [J]. Journal of Electrochemistry (电化学), 2015,10(5): 459-464.

[5] Chen W J, Shi L Y, Wang Z Y, et al. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high performance lithium-ion battery [J]. Carbohydrate Polymers, 2016, 147: 517–524.

[6]Xiao S Y, Yang Y Q, Li M X, et al. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries [J]. J. Power Sources, 2014, 270: 53–58.

[7]Lee H, Yanilmaz M, Toprakci O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries [J]. Energy & Environmental Science, 2014, 7(12): 3857-3886.

[8] Xiao W, Zhao L N, Gong Y Q, et al. Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries [J]. J. Membr. Sci., 2015, 487: 221-228.

[9] WooJ J , Nam S H, Seo S J, et al. A flame retarding separator with improved thermal stability for safe lithium-ion batteries [J]. Electrochemistry Communications, 2013, 35: 68-71.

[10] Ba C Y, Economy J. Preparation of PMDA/ODA polyimide membrane for use as substrate in a thermally stable composite reverse osmosis membrane [J]. Journal of Membrane Science, 2010, 363: 140-148.

[11] Ji W X (吉维肖), Wang F (王凤), Qian J F (钱江锋), et al. 3,4-ethylenedioxythiophene monomer as safety-enhancing additive for lithium ion batteries [J]. Journal of Electrochemistry (电化学), 2016, 22(3): 271-277.

文章导航

/