欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Pd/Fe3O4-C催化剂对甲醇、乙醇和丙醇氧化的电催化活性

展开
  • 1.湖南科技大学,化学化工学院,中国,湘潭,411201;2.理论有机化学与功能分子教育部重点实验室,中国湖南,湘潭,411201

收稿日期: 2016-11-04

  修回日期: 2017-03-15

  网络出版日期: 2017-03-16

基金资助

国家自然科学基金项目(21376070),湖南省研究生科研创新项目(CX2016B567)资助

Electroactivities of Pd/Fe3O4-C catalysts for electro-oxidation of methanol, ethanol and propanol

Expand
  • 1.School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; 2.Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Xiangtan 411201, Hunan, China

Received date: 2016-11-04

  Revised date: 2017-03-15

  Online published: 2017-03-16

摘要

制备对醇氧化反应具有优异电活性的钯催化剂是醇燃料电池研究的重要内容。本文用硼氢化钠还原法制备了钯纳米颗粒, 然后沉积在Fe3O4/C复合物表面, 得到了不同Fe3O4负载量的Pd/Fe3O4-C催化剂. 透射电镜(TEM)图显示钯纳米颗粒均匀地分散在Fe3O4/C表面. 对制备好的Pd/Fe3O4-C催化剂进行了循环伏安法(CV)、计时电流(CA)和电化学阻抗谱(EIS)的测试, 研究了其在碱性介质中对C1-C3醇类(甲醇、乙醇和丙醇)氧化的电催化活性. 结果表明, 所制备的不同Fe3O4负载量的Pd/Fe3O4(2%)-C,Pd/Fe3O4(5%)-C, Pd/Fe3O4(10%)-C和Pd/C催化剂中, Pd/Fe3O4(5%)-C催化剂表现出最高的醇氧化电流密度. 依据循环伏安(CV)数据,Pd/Fe3O4(5%)-C催化剂对甲醇、乙醇、正丙醇和异丙醇氧化的阳极峰电流密度分别是Pd/C催化剂的1.7、1.4、1.7和1.3倍. Pd/Fe3O4(5%)-C催化剂对乙醇氧化的电荷传递电阻也远低于Pd/C催化剂. 制备的所有催化剂对C1-C3醇类电氧化的电流密度大小排序如下: 正丙醇﹥乙醇﹥甲醇﹥异丙醇. 此外, 碳粉中Fe3O4纳米颗粒的存在提高了钯纳米颗粒的电化学稳定性.

本文引用格式

邹涛,易清风,张媛媛,刘小平,徐国荣,聂会东,周秀林 . Pd/Fe3O4-C催化剂对甲醇、乙醇和丙醇氧化的电催化活性[J]. 电化学, 2017 , 23(6) : 708 -717 . DOI: 10.13208/j.electrochem.161104

Abstract

Development of palladium (Pd) catalysts with high electroactivity for alcohol oxidation is significant for alcohol fuel cells. In this work, Pd nanoparticles were formed by sodium borohydride (NaBH4) reduction method and subsequently deposited on the surface of carbon supported ferriferrous oxide (Fe3O4/C) composites to obtain the Pd/Fe3O4-C catalysts with different Fe3O4 loadings. Their transmission electron microscopic (TEM) images show that the Pd nanoparticles were uniformly dispersed on the Fe3O4/C. Electroactivities of the prepared Pd/Fe3O4-C catalysts toward oxidations of C1-C3 alcohols (methanol, ethanol, n-propanol and iso-propanol) in alkaline media were investigated by cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy. Among the prepared catalysts (Pd/Fe3O4(2%)-C, Pd/Fe3O4(5%)-C, Pd/Fe3O4(10%)-C and Pd/C), the Pd/Fe3O4(5%)-C catalyst presented the highest electro-oxidation current density for oxidations of C1-C3 alcohols. According to the CV data, the anodic peak current densities for oxidations of methanol, ethanol, n-propanol and iso-propanol on the Pd/Fe3O4(5%)-C catalyst were over 1.7, 1.4, 1.7 and 1.3 times larger than that on the Pd/C catalyst, respectively. Furthermore, the charge transfer resistance of ethanol oxidation on the Pd/Fe3O4(5%)-C catalyst was much lower than that on the Pd/C catalyst. For all of the prepared catalysts, the decreases in electro-oxidation current density of the tested C1-C3 alcohols followed the order of n-propanol >ethanol > methanol >iso-propanol. In addition, the presence of Fe3O4 nanoparticles in the carbon powder improved the electrochemical stability of the Pd nanoparticles.

参考文献

 

[1] García-Cruz L, Casado-Coterillo C, Irabien Á, et al. Performance Assessment of Polymer Electrolyte Membrane Electrochemical Reactor Under Alkaline Conditions-A case study with the electrooxidation of Alcohols [J]. Electrochim. Acta, 2016, 206:165-173.
[2]Cai J D, Huang Y Y, Guo Y L. PdTex/C nanocatalysts with high catalytic activity for ethanol electro-oxidation in alkaline medium [J]. Appl. Catal. B: Environ., 2014, 150–151(9):230-237.
[3]Goel J, Basu S. Pt-Re-Sn as Metal Catalysts for Electro-Oxidation of Ethanol in Direct Ethanol Fuel Cell [J]. Energy Procedia, 2012, 28: 66-77.
[4] Yang G, Zhou Y, Pan H B, et al. Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium[J]. Ultrasonics Sonochemistry, 2016, 28,192-198.
[5]Yi Q F, Zou T, Zhang Y Y, et al. A novel alcohol/iron (III) fuel cell [J]. J. Power Sources,2016, 321: 219-225.
[6] Yi Q F, Chen Q H. In situ preparation and high electrocatalytic activity of binary Pd-Ni nanocatalysts with low Pd-loadings [J]. Electrochim. Acta,2015, 182:96-103.
[7] Yi Q F, Chu H, Chen Q H, et al. High Performance Pd, PdNi, PdSn and PdSnNi
Nanocatalysts Supported on Carbon Nanotubes for Electrooxidation of C2C4 Alcohols[J]. Electroanal., 2015, 27(2): 388-397.
[8] Yang H J, Wang H L, Ji S, et al. Synergy between isolated-Fe3O4 nanoparticles and CNx layers derived from lysine to improve the catalytic activity for oxygen reduction reaction [J]. Int. J. Hydrog. Energy, 2014, 39(8): 3739-3745.
[9] Huang Y, Liu Y, Yang Z, et al. Synthesis of yolk/shell Fe3O4–polydopamine–graphene–Pt nanocomposite with high electrocatalytic activity for fuel cells [J]. J. Power Sources,2014, 246(3): 868-875.
[10] Hong C Y(洪春艳). Preparation and characterization of Au/Fe3O4 nanoparticles and Pt/Au/Fe3O4 catalysts, Beijing University of Chemical Technology(北京化工大学), China, Master’s Thesis, 2013, p59-68
[11] Fu Z, Yan L, Li K, et al. The performance and mechanism of modified activated carbon air cathode by non-stoichiometric nano Fe3O4 in the microbial fuel cell [J]. Biosens. Bioelectron.,2015,74: 989-995.
[12] Wang Y, Zhao Y, Yin J, et al. Synthesis and electrocatalytic alcohol oxidation performance of Pd-Co bimetallic nanoparticles supported on graphene [J]. Inter. J. Hydrogen Energy, 2014, 39(3): 1325-1335.
[13] Zalineeva A, Serov A, Padilla M, et al. Nano-structured Pd-Sn catalysts for alcohol electro-oxidation in alkaline medium [J]. Electrochem. Commun., 2015, 57: 48-51.
[14] Zhang M, Yan Z, Xie J. Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media [J]. Electrochim. Acta, 2012, 77(9): 237-243.
[15] Yi Q F, Sun L Z, Liu X P, et al. Palladium–nickel nanoparticles loaded on multi-walled carbon nanotubes modified with b-cyclodextrin for electrooxidation of alcohols [J]. Fuel,2013, 111: 88-95.
[16] Yi Q F, Niu F G, Song L H, et al. Electrochemical Activity of Novel Titanium-Supported Porous Binary Pd-Ru Particles for Ethanol Oxidation in Alkaline Media [J]. Electroanal., 2011, 23(9): 2232-2240.
[17] Shen P K, Xu C. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts [J]. Electrochem. Commun.,2006, 8(1): 184-188.
[18] Hu F, Chen C, Wang Z, et al. Mechanistic study of ethanol oxidation on Pd–NiO/C electrocatalyst [J]. Electrochim. Acta,2006, 52(3):1087-1091.
[19] Wang H L(王海丽). Studies on oxygen reduction reaction of Pt/C electro-catalyst modified by Fe3O4, Dalian Jiaotong University(大连交通大学), China, Master’s Thesis, 2010, pp.29
[20] Manohara R, Goodenough J B. Methanol Oxidation in Acids on Ordered NiTi [J]. J. Mater. Chem.,1992, 2(8):875-887.
[21] ModibediR M, Masombuka T, Mathe M K. Carbon supported Pd–Sn and Pd–Ru–Sn nanocatalysts for ethanol electro-oxidation in alkaline medium [J]. Inter.J.hydrogen energy, 2011,36(8): 4664-4672.
[22] Liu Z, Guo B, Hong L, et al. Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation [J]. Electrochem. Commun.,2006, 8(1): 83-90.
[23] Liu Z, Zhang X, Hong L. Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation [J]. Electrochem. Commun.,2009, 11(4): 925-928.
[24] Liu J, Ye J, Xu C, et al. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti [J]. Electrochem. Commun., 2007, 9(9): 2334-2339.
文章导航

/