欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

添加剂丙烯基硫脲对镍电沉积的影响研究

  • 何亚宁 ,
  • 袁亮 ,
  • 丁治英 ,
  • 刘士军
展开
  • 中南大学 化学化工学院,湖南 长沙,410083

收稿日期: 2016-12-20

  修回日期: 2017-01-26

  网络出版日期: 2017-02-13

基金资助

“973”国家重点基础研究发展计划项目(No. 2014CB643401)资助

Effect of allyl thiourea on nickel electrodeposition from solution containing ammonia and chloride

  • HE Ya-ning ,
  • YUAN Liang ,
  • DING Zhi-ying ,
  • LIU Shi-jun
Expand
  • School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Huanan,China

Received date: 2016-12-20

  Revised date: 2017-01-26

  Online published: 2017-02-13

摘要

采用循环伏安、线性扫描和恒电位阶跃电化学方法结合扫描电镜研究了不同浓度的丙烯基硫脲(ATU)对NH3-NH4Cl-H2O体系镍在玻碳电极上的电沉积过程的影响. 循环伏安测试、线性扫描以及恒电位暂态曲线一致表明ATU的加入对镍电沉积具有阻化作用,并且随着ATU浓度的增加其阻化作用增强;恒电位暂态曲线结果表明,镍的电结晶是按瞬时形核三维生长机理进行的,随外加电位负移,晶体向外生长速率增大;ATU的加入没有改变镍的形核方式,但形核数密度增大,并且减小晶体向外生长的速率;扫描电镜结果表明,ATU的加入可以细化晶粒,得到整平、致密的镍沉积层.

本文引用格式

何亚宁 , 袁亮 , 丁治英 , 刘士军 . 添加剂丙烯基硫脲对镍电沉积的影响研究[J]. 电化学, 2017 , 23(6) : 638 -644 . DOI: 10.13208/j.electrochem.161217

Abstract

The effects of allylthiourea (ATU) concentration on the cathodic polarization behaviour, nucleation and surface morphology of nickel electrodeposited on the glassy carbon electrode from ammonia-ammonium chloride-water (NH3-NH4Cl-H2O) solutions were investigated by cyclic voltammogry, cathodic polarization and current transient methods. The results revealed that the addition of ATU inhibited nickel deposition, which was enhanced with an increase in ATU concentration from 5 to 50 mg•L-1. The initial deposition kinetics corresponded to a model including instantaneous nucleation and diffusion controlled growth. In the presence of ATU, the initial nucleation of nickel electrocrystallisation remained unchanged. However, the number density of nuclei increased and the crystal growth rate decreased. Furthermore, the addition of ATU apparently made the grains finer, leading to the formation of a more compact and uniform nickel deposit as compared with that without ATU.

参考文献

参考文献(Reference):

 [1] Mackenzie M, Virnig M, Feather A. The recovery of nickel from high-pressure acid leach solutions using mixed hydroxide product – LIX ® 84-INS technology[J]. Minerals Engineering,2006,19(12):1220-1233.

 [2] Cao H Z(曹华珍, Zheng G Q(郑国渠), Zhi B(支波)et al. Cathodic process of zinc electrowinning in solution containing a mmonia complex[J].Transactions of Nonferrous Metals society of China(有色金属学报),2005,15(4):655-660.

 [3] Zheng G Q(郑国渠), Zheng L F(郑利峰)Cao H Z(曹华珍),et al. Nickel electrodeposition from leaching solution containing ammonia and chloride[J]. Transactions of Nonferrous Metals society of China(有色金属学报), 2003,13(1):217-220.

 [4] Johnson G R, Turner D R. The Effect of Some Addition Agents on the Kinetics of Copper Electrodeposition from a Sulfate Solution II . Rotating Disk Electrode Experiments[J]. New Zealand Journal of Agricultural Research,1962,109(10):918-922.

[5] Suarez D F, Olson F A. Nodulation of electrodeposited copper in the presence of thiourea[J]. Journal of Applied Electrochemistry,1992,22(22):1002-1010.

 [6] Alodan M A. Confocal Laser Scanning Microscopy, Electrochemistry, and Quartz Crystal Microbalance Studies of Leveling Effects of Thiourea on Copper Deposition[J]. Journal of the Electrochemical Society,1998,145(3):957-963.

 [7] Awad M K. Semiempirical investigation of the inhibition efficiency of thiourea derivatives as corrosion inhibitors[J]. Journal of Electroanalytical Chemistry,2004,567(2):219-225.

[8] Haseeb A S M A, Schilardi P L, Bolzan A E, et al. Anodisation of copper in thiourea-containing acid solution : Part II. In situ transversal imaging observations. Kinetics of anodic film growth[J]. Journal of Electroanalytical Chemistry,2001,500(1–2):543-553.

[9] Oniciu L, Mure?an L. Some fundamental aspects of levelling and brightening in metal electrodeposition[J]. Journal of Applied Electrochemistry,1991,21(7):565-574.

[10] Hoekstra J J, Dan T. The Uptake of Sulfur from Plating Brighteners by Copper and Nickel[J]. Journal of the Electrochemical Society,1964,111(2).

[11] Cao H, Yang D, Zhu S, et al. Preparation, characterization, and electrochemical studies of sulfur-bearing nickel in an ammoniacal electrolyte: the influence of thiourea[J]. Journal of Solid State Electrochemistry,2012,16(9):3115-3122.

[12] Shen C B, Wang S G, Yang H Y. The adsorption stability and inhibition by allyl thiourea of bulk nanocrystalline ingot iron in dilute HCl solution. Appl Surf Sci[J]. Applied Surface Science,2006,253(4):2118-2122.

[13] Upadhyay D N, Yegnaraman V. Effect of thiourea and substituted thioureas on copper underpotential deposition on gold[J]. Materials Chemistry & Physics,2000,62(3):247-253.

[14] Chen G L, Lin H, Lu J H, et al. SERS and EQCM studies on the effect of allyl thiourea on copper dissolution and deposition in aqueous sulfuric acid[J]. Journal of Applied Electrochemistry,2008,38(11):1501-1508.

[15] Tang L N, Wang F P. Electrochemical evaluation of allyl thiourea layers on copper surface[J]. Corrosion Science,2008,50(4):1156-1160.

[16] Fletcher S. Some new formulae applicable to electrochemical nucleation/growth/collision[J]. Electrochimica Acta,1983,28(7):917-923.

[17] Mohanty U S, Tripathy B C, Singh P, et al. Effect of pyridine and its derivatives on the electrodeposition of nickel from aqueous sulfate solutions. Part II: Polarization behaviour[J]. Journal of Applied Electrochemistry,2001,31(9):969-972.

[18] Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta,1983,28(7):879-889.

[19] Song Y, Tang J, Hu J, et al. Insights into electrodeposition process of nickel from ammonium chloride media with speciation analysis and in situ synchrotron radiation X-ray imaging[J]. Electrochimica Acta,2016,210:812-820.

文章导航

/