欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

离子液体电解质种类对活性炭电极超级电容器电化学性能的影响

  • 张秋红 ,
  • 申保收 ,
  • 左宋林 ,
  • 卫歆雨
展开
  • 南京林业大学化学工程学院 江苏省生物质绿色燃料与化学品重点实验室,江苏 南京 210037

收稿日期: 2016-12-15

  修回日期: 2017-03-01

  网络出版日期: 2017-03-01

基金资助

林业公益性行业科研专项(No. 201404611)及教育部博士点博导基金(No. 20133204110007)资助

Engineering the Electrochemical Capacitive Properties of Activated Carbon by Correct Selection of Ionic-Liquid Electrolytes

  • ZHANG Qiu-hong ,
  • SHEN Bao-shou ,
  • ZUO Song-lin ,
  • WEI Xin-yu
Expand
  • Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037,China

Received date: 2016-12-15

  Revised date: 2017-03-01

  Online published: 2017-03-01

摘要

本文将经水蒸气二次活化的椰壳活性炭(W-AC)作为电极材料,选择1-乙基-3甲基咪唑四氟硼酸盐([EMIM]BF4)作为电解质,结果表明W-AC电极的比电容量远高于未活化的椰壳活性炭(R-AC). 使用循环伏安、恒电流充放电、交流阻抗等方法研究了不同种类离子液体电解质对超级电容器电化学性能的影响.  不同阴阳离子组成的离子液体作为电解质,直接影响超级电容器的电化学性能. 研究表明,由EMIM+和BMIM+阳离子与BF4-、TFSI-阴离子构成的离子液体电解质较适用于W-AC电极. 其中在[EMIM]BF4电解质中,单片电极的比电容量可高达153 F·g-1;在1-丁基-3-甲基-咪唑四氟硼酸盐([BMIM]BF4)电解质中电位窗可达3.5V,能量密度可高达57 Wh·kg-1. 本研究对于构筑高性能超级电容器离子液体的选择提供参考,以满足不同应用领域需求.

本文引用格式

张秋红 , 申保收 , 左宋林 , 卫歆雨 . 离子液体电解质种类对活性炭电极超级电容器电化学性能的影响[J]. 电化学, 2017 , 23(6) : 684 -693 . DOI: 10.13208/j.electrochem.161215

Abstract

In order to improve the electrochemical capacitive properties and to apply coconut shell activated carbon (AC) serving as electrode materials in ionic liquid (IL)-based supercapacitor (SC), the coconut shell AC material was re-activated using a steam as an activating agent in this work, forming a secondary AC (W-AC). The results showed that the specific capacitance of the W-AC electrode was much larger than that of the raw activated carbon electrode (R-AC) in 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4). The electrochemical techniques including cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) measurement, and electrochemical impedance spectroscopy (EIS) were used to systematically study the capacitive properties of W-AC electrode in a series of ILs composed of different cations and anions. The electrochemical performances of the W-AC electrode using different ILs as electrolytes varied because of the different ion diameters, liquid viscosities and ionic conductivities for various ILs. Among them, the IL electrolytes composed of EMIM+, BMIM+ and BF4-, TFSI- were found to be most suitable for W-AC electrode. The specific capacitance of W-AC electrode reached 153 F•g-1 in [EMIM]BF4 IL electrolyte, and the as–assembled SCs could achieve a high energy density of 57 Wh•kg-1 with a potential window of 3.5 V in [BMIM]BF4. These results may provide valuable information for selecting appropriate ionic liquids and designing high-performance supercapacitors to meet different needs.

参考文献

[1] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-377.

[2] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7 (11): 845-854.

[3] Mastragostino M, Soavi F. Strategies for high-performance supercapacitors for HEV[J]. Journal of Power Source, 2007, 174(1): 89-93.

[4] Huang P L, Luo X, Peng Y Y, et al. Ionic liquid electrolytes with various constituent ions for graphere-based supercapacitors[J]. Electrochimica Acta, 2015, 161: 371-377.

[5] Xu B, Wu F, Chen S, et al. High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs[J]. Electrochimica Acta, 2009, 54(8): 2185-2189.

[6] Tang Z, Tang C H, Gong H. A high energy density asymmetric supercapacitor from Nano- architectured Ni(OH)2/Carbon Nanotube electrodes[J]. Advanced Functional Materials, 2012, 22: 1272-1278.

[7] Lu W, Qu L T, Henry K, et al. High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes[J]. Journal of Powers Sources, 2009, 189 (2): 1270-1277.

[8] Yan Y F, Cheng Q L, Wang G C, et al. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application[J]. Journal of Power Sources, 2011, 196(18): 7835-7840.

[9] Hwang S W, Hyun S H. Capacitance control of carbon aerogel electrodes[J]. Journal of Non- Crystalline Solids, 2004, 347(347): 238-245.

[10] Chen J X, Zuo S L, Wang Y F, et al. Electrochemical properties of phosphoric acid active carbon modified by melamine[J]. Chemistry and Industry of Forest Products, 2016, 36(2): 37-44.

[11] Armand M, Endres F, MacFarlance D R, et al. Ionic liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8(8): 621-629.

[12] Tooming T, Thomberg T, Kurig H, et al. High power density supercapacitors based on the carbon dioxide activated D-glucose derived carbon electrodes and 1-ethyl-3- menthylimidazolium tetrafluoroborate ionic liquid[J]. Journal of Power Source, 2015, 280: 667 -677.

[13] Sillmars F B, Fletcher S I, Mirzaeian M, et al. Variation of electrochemical capacitor performance with room temperature ionic liquid electrolyte viscosity and ion size[J]. Physical Chemistry Chemical Physics, 2012, 14(17): 6094-6100.

[14] Wei L, Sevilla M, Fuertes A B, et al. Polypyrrole-derived activated carbons for high performance electrical double layer capacitors with ionic liquid electrolyte[J]. Advanced Functional Materials, 2012, 22(4): 827-834.

[15] Li Z, Liu J, Jiang K R, et al. Carbonized nanocellulose sustainably boots the performance of activated carbon in ionic liquid supercapacitors[J]. Nano Energy, 2016, 25: 161-169.

[16] Xie H J, Gélina B, Rochefort D. Redox-active electrolyte supercapacitors using electroactive ionic liquids[J]. Electrochemistry Communications, 2016, 66: 42-45.

[17] Seredych M, Hulicova-Jurcakova D, Gao Q L, et al. Surface functional groups of carbons and the effects of their chemical character,density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11): 1475-1488.

[18] Liu H, Xu B, Jia M Q, et al. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors[J]. Applied Surface Science, 2015, 332: 40-46.

[19] Zhao Y Q, Lu M, Tao P Y, et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors[J]. Journal of Power Sources, 2016, 307: 391-400.

[20] Gu W T, Sevilla M, Magasinski A, et al. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection[J]. Energy & Environmental Science, 2013, 6 (8): 2465-2476.

[21] Liu H T, Zhu G Y. The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids[J]. Journal of Power Sources, 2007, 171 (171): 1054-1061.

[22] Sathyamoorthi S, Suryanarayanan V, Velayutham D. Electrochemical exfoliation and in situ carboxylic functionalization of graphite in non-fluoro ionic liquid for supercapacitor application[J]. Journal of Solid State Electrochemistry, 2014, 18 (10): 2789-2796.

[23] Li Y T, Pi Y T, Lu L M, et al. Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance[J]. Journal of Power Sources, 2015, 299: 519-528.

[24] Zhao Y Q, Lu M, Tao P Y, et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors[J]. Journal of Power Sources, 2016, 307: 391-400.

文章导航

/