欢迎访问《电化学(中英文)》期刊官方网站,今天是
理论计算电化学近期研究专辑(厦门大学 程俊教授主编)

基于一氧化碳、二氧化碳和氧气分子吸附为探针的碳化钼、碳化钨、氮化钼和氮化钨的表面化学性质:密度泛函理论分析

展开
  • 美国南伊利诺伊大学化学与生物化学系, 卡本代尔, 伊利诺伊 62901

收稿日期: 2017-01-05

  修回日期: 2017-02-10

  网络出版日期: 2017-02-21

基金资助

We acknowledge the support of NSF-CBET program (Award no. CBET-1438440).

Surface Chemical Properties of Mo2C, W2C, Mo2N and W2N Probed with CO, CO2and O2 Adsorption: A DFT Analysis

Expand
  • Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA

Received date: 2017-01-05

  Revised date: 2017-02-10

  Online published: 2017-02-21

Supported by

We acknowledge the support of NSF-CBET program (Award no. CBET-1438440).

摘要

作为具有吸引力的电极材料,过渡金属碳化物与氮化物被应用在许多电化学储能及能量转换领域. 本工作中,通过密度泛函理论计算,以及一氧化碳 (CO), 二氧化碳(CO2)和 氧气(O2)分子的吸附来表征钼和钨的碳化物及氮化物,如碳化钼(Mo2C)、碳化钨(W2C)、氮化钼(Mo2N)和氮化钨(Mo2C)的表面化学性质. 这些探针分子可为研究钼和钨的碳化物及氮化物表面在酸性/碱性的氧化还原性质提供衡量方法. 计算结果表明,CO2分子的吸附发生在路易斯碱位,其碱性降低顺序为α-W2C(001) > α-W2N(001) > β-Mo2C(001) > γ-Mo2N(100). 此外,CO和O2分子吸附可用于评估上述碳化物及氮化物的还原能力,其还原性减小顺序为β-W2C(100) > α-Mo2C(100) > α-W2N(001) > α-W2C(001) > β-Mo2C(001) > γ-Mo2N(100). 由于还原本性,使得上述这些碳化物和氮化物成为在各种催化反应中有可能取代贵金属的良好候选材料.

本文引用格式

叶静云,张天雨,徐凌云,殷淑霞,Krishanthi Weerasinghe, Pamela Ubaldo, 和平,葛庆峰 . 基于一氧化碳、二氧化碳和氧气分子吸附为探针的碳化钼、碳化钨、氮化钼和氮化钨的表面化学性质:密度泛函理论分析[J]. 电化学, 2017 , 23(4) : 371 -380 . DOI: 10.13208/j.electrochem.170141

Abstract

Transition metal carbides and nitrides are attractive materials for electrodes in many electrochemical energy storage and conversion applications. In the present study, we use density functional theory slab calculations to characterize the surface chemical properties of molybdenum (Mo) and tungsten (W) carbides and nitrides, namely, Mo2C, W2C, Mo2N and W2N with the adsorption of CO, CO2 and O2. These probing molecules provide measures of in both acidity/basicity and redox property of for the surfaces of these carbides and nitrides. Our results show that Lewis basic sites were responsible for CO2 adsorption and the basicity follows followed an order of α-W2C(001) > α-W2N(001) > β-Mo2C(001) > γ-Mo2N(100). Both CO and O2 adsorption provide measures of in the reducing ability of these carbides and nitrides. The results showed a reducing ability in the order of β-W2C(100) > α-Mo2C(100) > α-W2N(001) > α-W2C(001) > β-Mo2C(001) > γ-Mo2N(100). The reducing nature of these carbides and nitrides make them good candidates to substitute noble metals in various catalytic reactions.

参考文献

1.      Stottlemyer, A. L.; Kelly, T. G.; Meng, Q.;et al Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis. Surface Science Reports 2012, 67 (9-10), 201-232.

2.      Zeng, M.; Li, Y., Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 2015, 3 (29), 14942-14962.

3.      Liang, C.; Li, W.; Wei, Z.; et al, Catalytic Decomposition of Ammonia over Nitrided MoNx/g-Al2O3 and NiMoNy/g-Al2O3 Catalysts. Industrial & Engineering Chemistry Research 2000, 39 (10), 3694-3697.

4.      Lee, J. S.; Locatelli, S.; Oyama, S. T.; et al, Molybdenum carbide catalysts 3. Turnover rates for the hydrogenolysis of n-butane. Journal of Catalysis 1990, 125 (1), 157-170.

5.      Ledoux, M. J.; Huu, C. P.; Guille, J.; et al, Compared activities of platinum and high specific surface area Mo2C and WC catalysts for reforming reactions: I. Catalyst activation and stabilization: Reaction of n-hexane. Journal of Catalysis 1992, 134 (2), 383-398.

6.      Lee, J. S.; Yeom, M.H.; Lee, D.S. , Journal of Molecular Catalysis 1990, 62, 145.

7.      Lee, J.S.; Yeom, M.H.; Park, K.Y.; et al., Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts. Journal of Catalysis 1991, 128 (1), 126-136.

8.      Ramanathan, S.; Oyama, S. T., New Catalysts for Hydroprocessing: Transition Metal Carbides and Nitrides. The Journal of Physical Chemistry 1995, 99 (44), 16365-16372.

9.      Claridge, J. B.; York, A. P. E.; Brungs, A. J.; et al, New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide. Journal of Catalysis 1998, 180 (1), 85-100.

10.   Patterson, P. M.; Das, T. K.; Davis, B. H., Carbon monoxide hydrogenation over molybdenum and tungsten carbides. Applied Catalysis A: General 2003, 251 (2), 449-455.

11.    Meng, H.; Shen, P. K., The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction. Chemical Communications 2005,  (35), 4408-4410.

12.   Cao, B.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G., Molybdenum nitrides as oxygen reduction reaction catalysts: structural and electrochemical studies. Inorg Chem 2015, 54 (5), 2128-36.

13.   Fernandez, E. M.; Moses, P. G.; Toftelund, A.; et al, Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angewandte Chemie-International Edition 2008, 47 (25), 4683-4686.

14.   Sproul, W. D.; Graham, M. E.; Wong, M.-S.; et al, Reactive unbalanced magnetron sputtering of the nitrides of Ti, Zr, Hf, Cr, Mo, Ti-Al, Ti-Zr and Ti-Al-V. Surface and Coatings Technology 1993, 61 (1-3), 139-143.

15.   Peter, H.; et al., Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films. Journal of Physics D: Applied Physics 2003, 36 (8), 1023.

16.   Wang, J.; Castonguay, M.; Deng, J.; et al, RAIRS and TPD study of CO and NO on b-Mo2C. Surface Science 1997, 374 (1-3), 197-207.

17.   St. Clair, T.; Dhandapani, B.; Oyama, S. T., Cumene hydrogenation turnover rates on Mo2C: CO and O2 as probes of the active site. Catalysis Letters 1999, 58 (4), 169-171.

18.   Wu, W.; Wu, Z.; Liang, C.; et al, In Situ FT-IR Spectroscopic Studies of CO Adsorption on Fresh Mo2C/Al2O3 Catalyst. The Journal of Physical Chemistry B 2003, 107 (29), 7088-7094.

19.   Wu, W.; Wu, Z.; Liang, C.; et al, An IR study on the surface passivation of Mo2C/Al2O3 catalyst with O2, H2O and CO2. Physical Chemistry Chemical Physics 2004, 6 (24), 5603-5608.

20.   Bej, S. K.; Bennett, C. A.; Thompson, L. T., Acid and base characteristics of molybdenum carbide catalysts. Applied Catalysis A: General 2003, 250 (2), 197-208.

21.   McGee, R. C. V.; Bej, S. K.; Thompson, L. T., Basic properties of molybdenum and tungsten nitride catalysts. Applied Catalysis A: General 2005, 284 (1-2), 139-146.

22.   Dubois, J.; Epicier, T.; Esnouf, C.; et al, Neutron powder diffraction studies of transition metal hemicarbides M2C1-x--I. Motivation for a study on W2C and Mo2C and experimental background for an in situ investigation at elevated temperature. Acta Metallurgica 1988, 36 (8), 1891-1901.

23.   Epicier, T.; Dubois, J.; Esnouf, C.; et al, Neutron powder diffraction studies of transition metal hemicarbides M2C1-x--II. In situ high temperature study on W2C1-x and Mo2C1-x. Acta Metallurgica 1988, 36 (8), 1903-1921.

24.   Shi, X. R.; Wang, S. G.; Wang, H.; et al, Structure and stability of b-Mo2C bulk and surfaces: A density functional theory study. Surface Science 2009, 603 (6), 852-859.

25.   Tominaga, H.; Nagai, M., Density Functional Theory of Water-Gas Shift Reaction on Molybdenum Carbide. The Journal of Physical Chemistry B 2005, 109 (43), 20415-20423.

26.   Tominaga, H.; Nagai, M., Theoretical study of methane reforming on molybdenum carbide. Applied Catalysis A: General 2007, 328 (1), 35-42.

27.   Tominaga, H.; Nagai, M., Mechanism of thiophene hydrodesulfurization on clean/sulfided b-Mo2C(0 0 1) based on density functional theory--cis- and trans-2-Butene formation at the initial stage. Applied Catalysis A: General 2008, 343 (1-2), 95-103.

28.   Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996, 54 (16), 11169.

29.   Kresse, G.; Hafner, J., Ab initio molecular dynamics for open-shell transition metals. Physical Review B 1993, 48 (17), 13115.

30.   Blochl, P. E., Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953-17979.

31.   Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758.

32.   Parthe, E.; Sadogopan, V., The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallographica 1963, 16 (3), 202-205.

33.   Suetin, D.; Shein, I.; Kurlov, A.; et al, Band structure and properties of polymorphic modifications of lower tungsten carbide W2C. Physics of the Solid State 2008, 50 (8), 1420-1426.

34.   Suetin, D. V.; Shein, I. R.; Ivanovskii, A. L., Structural, electronic properties and stability of tungsten mono- and semi-carbides: A first principles investigation. Journal of Physics and Chemistry of Solids 2009, 70 (1), 64-71.

35.   Bull, C. L.; Kawashima, T.; McMillan, P. F.; et al, Crystal structure and high-pressure properties of g-Mo2N determined by neutron powder diffraction and X-ray diffraction. Journal of Solid State Chemistry 2006, 179 (6), 1762-1767.

36.   Suetin, D.; Shein, I.; Ivanovskii, A., Electronic structure of cubic tungsten subnitride W2N in comparison to hexagonal and cubic tungsten mononitrides WN. Journal of Structural Chemistry 2010, 51 (2), 199-203.

文章导航

/