欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

NiS2纳米片的制备及其在非对称超级电容器中的应用

  • 王元有 ,
  • 刘亚楠 ,
  • 金党琴
展开
  • 扬州工业职业技术学院, 扬州 225127

收稿日期: 2017-01-03

  修回日期: 2017-02-10

  网络出版日期: 2017-02-13

基金资助

省级青蓝工程|项目(2016-15)、校级重点课题 (No. 2016xjzk001)、江苏高校品牌建设工程资助项目(No. PPZY2015B180)及2017年江苏省高等学校优秀科技创新团队项目(苏教科[2017]6号)资助

Preparation of NiS2 nanosheet and its application in asymmetric supercapacitor

  • Wang Yuan-you ,
  • Liu Ya-nan ,
  • JIN Dang-qin
Expand
  • Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225127

Received date: 2017-01-03

  Revised date: 2017-02-10

  Online published: 2017-02-13

摘要

本文采用牺牲模板法,以Ni(OH)2作为前驱体制备NiS2. 通过对NiS2进行XRD、EDS、BET、SEM及TEM等表征来研究NiS2的元素组成及结构形貌. SEM及TEM结果显示前驱体及NiS2均为纳米片结构. 电化学测试结果表明NiS2存在着优秀的电容性能,在电流密度为1 A·g-1时,NiS2比电容能够达到1067.3 F·g-1,同时具有高的倍率特性. 为了进一步探究NiS2作为电活性材料的实用性,以NiS2作为阳极材料,活性炭(AC)作为阴极组装成非对称超级电容器,在功率密度为0.8 kW·kg-1,能量密度高达38.4 Wh·kg-1,并且在3000次恒流充放电后,比电容依然保持93.7%.

本文引用格式

王元有 , 刘亚楠 , 金党琴 . NiS2纳米片的制备及其在非对称超级电容器中的应用[J]. 电化学, 2017 , 23(6) : 667 -674 . DOI: 10.13208/j.electrochem.170103

Abstract

In this work, the NiS2 nanosheets have been synthesized using Ni(OH) as a precursor through a sacrificial template method. The microstructure and chemical composition of as-prepared NiS2 were characterized by XRD, EDS, BET, SEM and TEM techniques. The results showed that both Ni(OH) and NiS were composed of nanoplates. The electrochemical tests revealed that NiS2 exhibited the high specific capacitance of 1067.3 F•g-1 at a current density of 1 A•g-1 and excellent rate performance. Furthermore, in order to evaluate the practical application of NiS2, an asymmetric supercapacitor, NiS2 as the positive electrode and AC as the negative electrode, displayed high energy density of 38.4 Wh•kg-1 with a power density of 0.8 kW•kg-1. Meanwhile, the asymmetric supercapacitor showed a superior cycling performance and 93.7% of the specific capacitance was retained after 3000 charge-discharge cycles.

参考文献

[1]    Xing J C, Zhu Y L, Zhou Q W, et al. Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors[J]. Electrochimica Acta, 2014, 136: 550-556.

[2]    Pu J, Cui F L, Chu S B, et al. Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 809-815.

[3]    Xu X, Zhou H, Ding S J, et al. The facile synthesis of hierarchical NiCoO2 nanotubes comprised ultrathin nanosheets for supercapacitors[J]. Journal of Power Sources, 2014, 267: 641-647.

[4]    Yang J Q, Duan X C, Guo W, et al. Electrochemical performances investigation of NiS/GO composite as electrode material for supercapacitors[J]. Nano Energy, 2014, 5: 74-81.

[5]    Pang H, Wei C Z, Li X X, et al. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production[J]. Scientific Reports, 2014, 4: 3577.

[6]    Li J J, Hu Y X, Liu M C, et al. Mechanical alloying synthesis of Ni3S2 nanoparticles as electrode material for pseudocapacitor with excellent performances[J]. Journal of Alloys Compounds, 2016, 656: 138-145.

[7]    Zhang Y, Sun W P, Rui X H, et al. One-pot synthesis of tunable crystalline Ni3S4@Amophous MoS2 core/shell nanospheres for high-performance supercapacitors[J]. Small, 2015, 11 (30): 3694-3702.

[8]    Chen H, Hu L F, Yan Y, et al. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance[J]. Advanced Energy Materials, 2013, 3(12): 1636-1646.

[9]    Dai Z Y, Zang X X, Yang J, et al. Template synthesis of shape-tailorable NiS2 hollow prisms as high-performance supercapacitor materials[J]. ACS Applied materials & Interfaces, 2015, 7 (45): 25396-25401.

[10] Zhang H H, Guan B, Gu J N, et al. One-step synthesis of nickel cobalt sulphides particles: tuning the composition for high performance supercapacitors [J]. RSC Advances, 2016, 6(64): 58916-58924.

[11] Ruan Y J, Jiang J J, Wan H Z, et al. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors[J]. Jounal of Power Sources, 2016, 301: 122-130.

[12] Chen H C, Jiang J J, Zhang L, et al. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance[J]. Jounal of Power Sources, 2014, 254: 249-257.

[13] Chen H C, Jiang J J, Zhao Y D, et al. One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance[J]. Journal Materials Chemistry A, 2015, 3(1): 428-437.

[14] Dai C S, Chien P Y, Lin J Y, et al. Hierarchically structured Ni3S2/Carbon nanotube compoosites as high performance cathode materials for asymmetric supercapacitors[J]. ACS Applied materials & Interfaces, 2013, 5(22): 12168-12174.

[15] Chou S W, Lin J Y. Cathodic Deposition of Flaky Nickel Sulfide Nanostructure as an Electroactive Material for High-Performance Supercapacitors[J]. Journal of The Electrochemical Society, 2013, 160(4): D178-D182.

[16] Zhu Y R, Wu Z B, Jing M J, et al. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors[J]. Journal of Power Sources, 2015, 273:584-590.

文章导航

/