欢迎访问《电化学(中英文)》期刊官方网站,今天是
有机电化学及电化学工业近期研究专辑(华东理工大学张新胜教授、北京化工大学曾程初教授主编)

高烯丙醇和高烯丙胺的电化学合成研究进展

  • 钟伟强 ,
  • 梁向晖 ,
  • 黄精美
展开
  • 广东省功能分子工程重点实验室,化学与化工学院,华南理工大学 广州 510641

收稿日期: 2016-10-31

  修回日期: 2017-01-16

  网络出版日期: 2017-01-19

基金资助

国家自然科学基金(21471059)、华南理工大学探索性项目(Y1140410,Y9160040)资助

Electrochemical Synthesis of Homoallylic Alcohols and Homoallylic Amines

  • ZHONG Wei-qiang ,
  • LIANG Xiang-hui ,
  • HUANG Jing-mei
Expand
  • Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China

Received date: 2016-10-31

  Revised date: 2017-01-16

  Online published: 2017-01-19

摘要

电化学技术已经在有机合成得到广泛重视,本文简要概述了利用羰基和亚胺的电化学烯丙基化反应合成高烯丙醇和高烯丙胺的方法. 该方法已经得到了比较瞩目的进展,特别是在水相中的电化学烯丙基化反应,充分体现了绿色化学的特点。在提高电流效率和区域选择性,利用手性催化剂进行手性合成等方面还期待更多的关注和发展.

本文引用格式

钟伟强 , 梁向晖 , 黄精美 . 高烯丙醇和高烯丙胺的电化学合成研究进展[J]. 电化学, 2017 , 23(3) : 297 -306 . DOI: 10.13208/j.electrochem.161047

Abstract

Electrochemical technique has been widely applied in the organic synthesis. This review focuses on the electrochemical synthesis of homoallylic alcohols and homoallylic amines from the allylation of carbonyl compounds and imines. This method has been developed impressively, especially in the field of electrochemical allylation in a green solvent of aqueous media. Improvement of the efficiency of the electricity, regio-selectivity and chiral synthesis are expected.

参考文献

[1] Yamamoto Y, Asao N. Selective reactions using allylic metals[J]. Chem. Rev., 1993, 93(6), 2207-2293.

[2] (a) Yoshida J, Kataoka K, Horcajada R, Nagaki A. Modern Strategies in Electroorganic Synthesis[J]. Chem. Rev., 2008, 108(7), 2265-2299. (b) Little R D, Moeller K D. Organic electrochemistry as a tool for synthesis. Umpolung reactions, reactive intermediates, and the design of new synthetic methods[J]. Electrochem. Soc. Interf, 2002, 11(4), 36-42. (c) Moeller K D. Synthetic Applications of Anodic Electrochemistry[J]. Tetrahedron, 2000, 56(49), 9527-9554. (d) Frontana-Uribe B A, Little R D, Ibanez J G, et al. Organic Electrosynthesis: a promising green methodology in organic chemistry[J]. Green Chem., 2010, 12(12), 2099-2119. (e) Anastas P T, Kirchhoff M M Acc. Origins, Current status, and Future Challenges of Green Chemistry[J]. Chem. Res., 2002, 35(9), 686-694.

[3] Satoh S, Suginome H, Tokuda M. Regioselectivity in electrochemical additions of the allyl groups in substituted allyl halides to α,β-unsaturated esters or acetone[J]. Tetrahedron Lett., 1981, 22(20), 1895-1898.

[4] Tokuda M, Satoh S, Suginome H. Regioselectivity in electrochemical allylation of carbonyl compounds. A synthesis of egomaketone by regioselective allylation[J]. J. Org. Chem., 1989, 54(23), 5608-5613.

[5] Tokuda M, Uchida M, Katoh Y. et al. New efficient electrochemical allylation of aldehydes and ketones with a cadmium-modified electrode[J]. Chem.Lett., 1990, 461-462.

[6] Uneyama K, Matsuda H, Torri S. Grignard-type allylation of carbonyl compounds in methanol by the electrochemically recycled allyltin reagent[J]. Tetrahedron Lett., 1984, 25(52), 6017-6020.

[7] Sibille S, d’Incan E, Leport. L. Electroreductive coupling of methallylchloride or methyl chloroacetate with carbonyl compounds catalyzed by nickel bipyridine complexes[J]. Tetrahedron Lett., 1987, 28(1), 55-58.

[8] Hilt G, Smoko K. I. Electrochemical Regeneration of Low-Valent Indium(I) Species as Catalysts for C-C Bond Formations[J]. Angew. Chem. Int. Ed. 2001, 40(18), 3399-3402.

[9] Amemiya F, Fuse K, Fuchigami T and Atobe M. Chemoselective reaction system using a two inlet micro-flow reactor: application to carbonyl allylation[J]. Chem. Commun.,2010, 46(16), 2730–2732.

[10] Ronny F M S, Madalena C C A, Lothar W B, et al. Electrochemical allylation of aldehydes in a solvent-free cavity cell with a graphite powder cathode[J]. Green Chem., 2011, 13(5), 1118–1120.

[11] Sahloul K, Sun L H, Requet A, et al. A Samarium “Soluble” Anode: A New Source of SmI2 Reagent for Electrosynthetic Application[J]. Chem. Eur. J., 2012, 18(36), 11205 – 11209.

[12] Qiu W M and Wang Z Q. Pd-catalysed Reaction of Allylic Acetates with Carbonyl Compounds via Electrochemical Reduction[J]. J. Chem. Soc., Chem. Commun., 1989, 6, 356-357.

[13] Zhang P P, Zhang W C, Zhang T F, et al. The Mechanism of the Palladium-catalysed Reaction of Allylic Acetates with Carbonyl Compounds via Electrochemical Reduction[J]. J. Chem. Soc., Chem. Commun., 1991, 491-492.    

[14] Durandetti S, Sibille S, Périchon J. Electrochemical allylation of carbonyl compounds using nickel catalyst and zinc(II) species[J] J. Org. Chem. 1989, 54(9), 2198-2204.

[15] Durandetti S, Meignein C, Périchon J. Iron-Catalyzed Electrochemical Allylation of Carbonyl Compounds by Allylic Acetates[J]. J. Org. Chem., 2003, 68(8), 3121-3124.

[16] (a)Medeiros M J, Pintaric C, Olivero S, et al. Nickel-catalysed electrochemical carboxylation of allylic acetates and carbonates[J]. Electrochimica Acta, 2011, 56(11), 4384–4389. (b)France D, Olivero S, Duñach E. Intramolecular  ally1 transfer  reactions  catalyzed  by  electrogenerated  nickel-bipyridine  complexes: electrosynthesis  of  homoallylic  alcohols[J]. Electrochim. Acta, 1997, 42(13), 2159-2164.

[17] Franco D, Panyella D, Rocamora M, et al. Electrochemical cleavage of allyl aryl ethers and allylation of carbonyl compounds: umpolung of allyl-palladium species[J]. Tetrahedron Letters, 1999, 40(31), 5685-5688.

[18] Olivero S, Franco D, Clinet J C, Duñach E. Electrochemical Reduction of Allyl Ethers in the Presence of Nickel Complexes: a Review of Synthetic Applications[J]. Collect. Czech. Chem. Commun., 2000, 65(6), 844-861.

[19] Franco D, Wenger K, Antonczak S, et al. Intramolecular Allyl Transfer Reaction from Allyl Ether toAldehydeGroups: Experimental and Theoretical Studies[J]. Chem. Eur. J., 2002, 8(3), 664-672.

[20] aLi C J, Chan T. Comprehensive Organic Reaction In Aqueous Media[M]. New York, 1997. (b) Li, C J. Aqueous Barbier-Grignard type reaction: Scope, mechanism, and synthetic applications[J]. Tetrahedron, 1996, 52(16), 5643-5668. (c) Li C J. Organtic reactions in aqueous media – with a focus on carbon-carbon bond formation[J]. Chem. Rev., 1993, 93(6), 2023-2035. (d) André L, Jacques A, Yves Q. Water-promoted organic reactions[J]. Synthesis, 1994, (8), 741-760. (e) Li C J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update[J]. Chem. Rev., 2005, 105(8), 3095-3166.

[21] Zha Z G, Hui A, Zhou Y, et al.  A Recyclable Electrochemical Allylation in Water[J]. Org. Lett., 2005, 7(10), 1903-1905.

[22] Huang J M, Dong Y. Zn-mediated electrochemical allylation of aldehydes in aqueous ammonia[J]. Chem. Commun., 2009, (26), 3943-3945.

[23] Huang J M, Ren H R. Electrochemical allylation of carbonyl compounds in aqueous electrolyte catalyzed by zinc[J]. Chem. Commun., 2010, 46(13), 2286-2288.

[24] Zhang L, Zha Z G, Wang Z Y. et al. Aqueous electrosynthesis of carbonyl compounds and the corresponding homoallylic alcohols in a divided cell[J]. Tetrahedron Lett., 2010, 51(10), 1426–1429.

[25] Zhang L, Zha Z G, Wang Z Y. An efficient electrochemical method for the paired synthesis of carbonyl compounds and homoallylic alcohols in a simple home-made cell[J]. Synlett., 2010, (13), 1915-1918.

[26] Li Z, Zha Z G, Zhang Z L, et al. An electrochemical tandem reaction: one-pot synthesis of homoallylic Alcohols from alcohols in aqueous media[J]. Chem. Commun., 2010, 46(13), 7196-7198.

[27] Sinha A K, Mondal B, Kundu M, et al. Recyclable electrochemical allylation in aqueous ZnCl2medium: synthesis and reactivity of a wire-shaped nano zinc architecture[J]. Org. Chem. Front., 2014, 1(11), 1270–1275.

[28] Khan F N, Jayakumar R, Pillai C N. Electrochemical reductive allylation of N-benzylideneethanolamine[J]. Tetrahedron Lett., 2002, 43(38), 6807–6809.

[29] Hilt G, Smoko K I. Indium-catalyzed allylation of imines with electrochemically assisted catalyst regeneration[J]. Tetrahedron Letters. 2002, 43(8), 1437-1439.

[30] Huang J M, Wang X X, Dong Yi. Electrochemical allylation reactions of simple imines in aqueous solution mediated by nanoscale zinc architecture[J].  Angew. Chem. Int. Ed., 2011, 50(4), 924-927.

文章导航

/