欢迎访问《电化学(中英文)》期刊官方网站,今天是
有机电化学及电化学工业近期研究专辑(华东理工大学张新胜教授、北京化工大学曾程初教授主编)

大黄素的电化学氧化还原机理研究

  • 李 丹 ,
  • 金葆康
展开
  • 安徽大学化学化工学院,合肥 230601

收稿日期: 2016-10-27

  修回日期: 2016-11-25

  网络出版日期: 2016-11-29

基金资助

国家自然科学基金项目(21175001, 21273008), 教育部博士点专项基金(20103401110001), 安徽大学“211计划”资助

Study on the Electrochemical Redox Mechanism of Emodin

  • LI Dan ,
  • JIN Bao-kang
Expand
  • Department of Chemistry, Anhui University, Hefei 230601, China

Received date: 2016-10-27

  Revised date: 2016-11-25

  Online published: 2016-11-29

摘要

本文利用循环伏安法(CV)、红外光谱循环伏吸法(CVA)和导数循环伏吸法(DCVA)研究大黄素(Q)在乙腈溶剂中的电子转移机理.Q的还原过程中阴离子自由基Q?-会结合中性分子Q生成二聚物Q2?-. Q2?-在更负的电位下进一步还原为Q22-.当扫描范围为-0.2 ~ -2.0 V时,经过一个循环伏安过程,在扫描结束物质并没有回到反应物Q,而是Q22-.  Q22-会继续发生电化学反应,经历两步一电子过程,分别生成Q23-. 和Q24-.,对应CV图中峰C3和C4.当扫描范围扩大至1.0~-2.0 V时,在更正的电位下,观察到两个新的氧化峰A1和A2,该范围内的三圈扫描结果表明,在扫描结束物质重新氧化回到Q.当扫描范围缩小至0.3 ~ -1.4 V,A2峰随着扫描圈数的增加而增大,与A2峰对应的氧化产物Q2?-在溶液中不断积累.A1峰对应于Q2?-氧化回到Q.

本文引用格式

李 丹 , 金葆康 . 大黄素的电化学氧化还原机理研究[J]. 电化学, 2017 , 23(3) : 347 -355 . DOI: 10.13208/j.electrochem.161045

Abstract

The electrochemical reduction of emodin (Q) has been investigated in acetonitrile by cyclic voltammetry (CV), IR spectroelectrochemistry cyclic voltabsorptometry (CVA) and derivative cyclic voltabsorptometry (DCVA) techniques. It was found that anion radical Q•− interacted with neutral Q to form dimer Q2•− which was further reduced to Q22− at more negative potentials. A two-step one-electron process involving electrochemical reductions of Q22− to form Q23− in the first step and Q24− in the second step, corresponding to the two cathodic peaks of C3 and C4 in CV curves was confirmed. When the scan range was between 1.0 and -2.0 V, there were two new anodic peaks (A1, A2) formed at more positive potentials. When the scan range was 0.3~-1.4 V, the current value of A2 increased with the added scan cycles, indicating that Q2•− accumulated in the solution. The C1 and C2 peaks still appeared in the second and third scans in CV curves under the consecutive scans from 1.0 to -2.0 V, suggesting the regainer of Q after each potential cycle. And Q2•− would be oxidized to Q at the potential corresponding to A1. As a result, the electrochemical redox mechanism of emodin has been proposed.

参考文献

[1] Agarwal S, Singh S S, Verma S, et al. Antifungal activity of anthraquinone derivatives from< i> Rheum emodi</i>[J]. Journal of ethnopharmacology, 2000, 72 (1):43-46.

[2] Alves S, Cesar C, F Da Costa C, et al. Synthesis and Evaluation of Cytotoxicity and Inhibitory Effect on Nitric Oxide Production by J774A. 1 Macrophages of New Anthraquinone Derivatives[J]. Medicinal Chemistry, 2013, 9 (6):812-818.

[3] Ly D, Sanii L, Schuster G B. Mechanism of charge transport in DNA: internally-linked anthraquinone conjugates support phonon-assisted polaron hopping[J]. Journal of the American Chemical Society, 1999, 121 (40):9400-9410.

[4] Takahashi E, Marczylo T H, Watanabe T, et al. Preventive effects of anthraquinone food pigments on the DNA damage induced by carcinogens in< i> Drosophila</i>[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 480:139-145.

[5] Esmat A Y, Said M M, Khalil S A. Aloin: A natural antitumor anthraquinone glycoside with iron chelating and non-atherogenic activities[J]. Pharmaceutical Biology, 2015, 53 (1):138-146.

[6] Vanajothi R, Srinivasan P. An anthraquinone derivative from Luffa acutangula induces apoptosis in human lung cancer cell line NCI-H460 through p53-dependent pathway[J]. Journal of Receptors and Signal Transduction, 2016, 36 (3):292-302.

[7] Machatova Z, Barbierikova Z, Poliak P, et al. Study of natural anthraquinone colorants by EPR and UV/vis spectroscopy[J]. Dyes and Pigments, 2016, 132:79-93.

[8] Zhan Y, Li D, Wei H, et al. Emodin on hepatic fibrosis in rats[J]. Chinese medical journal, 2000, 113 (7):599-601.

[9] Li W Y, Chan R Y K, Yu P H F, et al. Emodin induces cytotoxic effect in human breast carcinoma MCF-7 cell through modulating the expression of apoptosis-related genes[J]. Pharmaceutical Biology, 2013, 51 (9):1175-1181.

[10] Sharma R, Tiku A B. Emodin, an anthraquinone derivative, protects against gamma radiation-induced toxicity by inhibiting DNA damage and oxidative stress[J]. International Journal of Radiation Biology, 2014, 90 (4):275-283.

[11] Wang Q J, Cai X B, Liu M H, et al. Apoptosis induced by emodin is associated with alterations of intracellular acidification and reactive oxygen species in EC-109 cells[J]. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 2010, 88 (4):767-774.

[12] Astudillo P D, Valencia D P, González-Fuentes M A, et al. Electrochemical and chemical formation of a low-barrier proton transfer complex between the quinone dianion and hydroquinone[J]. Electrochimica Acta, 2012, 81:197-204.

[13] Clare L A, Rojas-Sligh L E, Maciejewski S M, et al. The Effect of H-Bonding and Proton Transfer on the Voltammetry of 2, 3, 5, 6-Tetramethyl-p-phenylenediamine in Acetonitrile. An Unexpectedly Complex Mechanism for a Simple Redox Couple[J]. The Journal of Physical Chemistry C, 2010, 114 (19):8938-8949.

[14] Jin B, Huang J, Zhao A, et al. Direct evidence of hydrogen-bonding and/or protonation effect on p-benzoquinone electrochemical reduction by in situ IR spectroelectrochemical study[J]. Journal of Electroanalytical Chemistry, 2010, 650 (1):116-126.

[15] Kim Y O, Jung Y M, Kim S B, et al. Two-dimensional correlation analysis of spectroelectrochemical data for p-benzoquinone reduction in acetonitrile[J]. Analytical chemistry, 2004, 76 (17):5236-5240.

[16] March G, Reisberg S, Piro B, et al. Electrochemical kinetic analysis of a 1, 4-hydroxynaphthoquinone self-assembled monolayer[J]. Journal of Electroanalytical Chemistry, 2008, 622 (1):37-43.

[17] Quan M, Sanchez D, Wasylkiw M F, et al. Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones[J]. Journal of the American Chemical Society, 2007, 129 (42):12847-12856.

[18] Gendell J, Miller Jr W R, Fraenkel G K. Electron spin resonance studies of hydroxysemiquinone radicals. Hydrogen-deuterium isotope effects in intramolecular hydrogen bonds[J]. Journal of the American Chemical Society, 1969, 91 (16):4369-4380.

[19] Aguilar-Martínez M, Bautista-Martinez J, Macias-Ruvalcaba N, et al. Molecular structure of substituted phenylamine α-OMe-and α-OH-p-benzoquinone derivatives. Synthesis and correlation of spectroscopic, electrochemical, and theoretical parameters[J]. The Journal of organic chemistry, 2001, 66 (25):8349-8363.

[20] Frontana C, Frontana-Uribe B A, González I. Electrochemical and ESR study on the transformation processes of α-hydroxy-quinones[J]. Journal of Electroanalytical Chemistry, 2004, 573 (2):307-314.

[21] Frontana C, González I. Effects of the molecular structure on the electrochemical properties of naturally occurring α-hydroxyquinones. An electrochemical and ESR study[J]. Journal of Electroanalytical Chemistry, 2007, 603 (2):155-165.

[22] Astudillo Sánchez P D, Evans D H. Reversible dimerization of the anion radicals of some dicyanonaphthalenes[J]. Journal of Electroanalytical Chemistry, 2011, 660 (1):91-96.

[23] Nepomnyashchii A B, Bro?ring M, Ahrens J, et al. Chemical and Electrochemical Dimerization of BODIPY Compounds: Electrogenerated Chemiluminescent Detection of Dimer Formation[J]. Journal of the American Chemical Society, 2011, 133 (48):19498-19504.

[24] Teply? F, C?i?z?kova? M, Slavi?c?ek P, et al. Electron Transfer Triggers Fast Dimer/Monomer Switching of Pyridinium and Quinolinium Cations[J]. The Journal of Physical Chemistry C, 2012, 116 (5):3779-3786.

[25] Maci?as-Ruvalcaba N A, Evans D H. Association Reactions of the Anion Radicals of Some Hydroxyquinones: Evidence for Formation of π-and σ-Dimers As Well As a Neutral− Anion Radical Complex[J]. The Journal of Physical Chemistry C, 2010, 114 (2):1285-1292.

[26] Cheng W X, Jin B K, Huang P, et al. Investigation on the π-Dimer/σ-Dimer of 1,8-Dihydroxy-9,10-anthracenedione in the Process of Electrochemical Reduction by Using IR Spectroelectrochemical Cyclic Voltabsorptometry and Derivative Cyclic Voltabsorptometry[J]. The Journal of Physical Chemistry C, 2013, 117 (8):3940-3948.

[27] Ossowski T, Pipka P, Liwo A, et al. Electrochemical and UV-spectrophotometric study of oxygen and superoxide anion radical interaction with anthraquinone derivatives and their radical anions[J]. Electrochimica acta, 2000, 45 (21):3581-3587.

[28] Wang X, Jin B, Lin X. In-situ FTIR spectroelectrochemical study of dopamine at a glassy carbon electrode in a neutral solution[J]. Analytical sciences, 2002, 18 (8):931-933.

[29] Jin B K, Li L, Huang J L, et al. IR spectroelectrochemical cyclic voltabsorptometry and derivative cyclic voltabsorptometry[J]. Anal Chem, 2009, 81 (11):4476-4481.

[30] Astuti Y, Topoglidis E, Briscoe P B, et al. Proton-coupled electron transfer of flavodoxin immobilized on nanostructured tin dioxide electrodes: Thermodynamics versus kinetics control of protein redox function[J]. Journal of the American Chemical Society, 2004, 126 (25):8001-8009.

文章导航

/