欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

钙处理对桥梁钢耐大气腐蚀性能的影响

  • 李东亮 ,
  • 付贵勤 ,
  • 朱苗勇
展开
  • 东北大学 冶金学院,沈阳 110819

收稿日期: 2016-10-20

  修回日期: 2016-11-30

  网络出版日期: 2016-12-01

基金资助

国家自然科学基金项目(51304040)和教育部基本科研业务费项目(N150204008)资助

Effect of Calcium on Atmospheric Corrosion Resistance of Bridge Steel

  • LI Dong-liang ,
  • FU Gui-qin ,
  • ZHU Miao-yong
Expand
  • School of Metallurgy, Northeastern University, Shenyang 110819, China

Received date: 2016-10-20

  Revised date: 2016-11-30

  Online published: 2016-12-01

摘要

以NaCl+NaHSO3溶液为腐蚀介质,采用干/湿周浸加速腐蚀实验、失重分析、XRD、SEM和电化学方法,研究了钙(Ca)处理对桥梁钢在湿热工业-海洋大气中腐蚀行为的影响. 结果表明:Ca处理前后,实验钢的腐蚀深度随时间变化曲线总体符合幂函数W=Atn分布规律,锈层主要由非晶物质和少量晶体α-FeOOH、β-FeOOH、γ-FeOOH、Fe3O4组成. 微量Ca能促进铁素体生成、强化钢表面保护膜,以阻止裸钢的快速腐蚀;还能细化钢组织晶粒、抑制腐蚀产物的晶体转变,以细化锈层颗粒、减少锈层缺陷产生,进而改善锈层的致密性.

本文引用格式

李东亮 , 付贵勤 , 朱苗勇 . 钙处理对桥梁钢耐大气腐蚀性能的影响[J]. 电化学, 2017 , 23(6) : 724 -731 . DOI: 10.13208/j.electrochem.161020

Abstract

The corrosion behavior of bridge steel in simulated hot and humid industrial-marine atmosphere was investigated by mass loss analysis, XRD, SEM, electrochemical methods and a wet/dry alternate immersion corrosion test using 0.1 mol•L-1 NaCl+0.01 mol•L-1 NaHSO3 solutions. The corrosion depth (W) of experimental steels before and after calcium treatment versus time (t) curves showed a good agreement with the power function of W=Atn. The corrosion products were mainly composed of amorphous phase and a small amount of crystals including α-FeOOH, β-FeOOH, γ-FeOOH and Fe3O4. Trace calcium could promote the formation of ferrite and strengthen the protective film on steel surface to prevent the rapid corrosion of bare steel. It could also refine the grain of steel structure and inhibit the crystal transformation of corrosion products, accordingly, refine the particles of corrosion products and reduce the defects in rust layer, and finally, improve the density of rust layer.

参考文献

[1] Xu Z B (许中波). Influence of inclusion content and morphology on mechanical properties of steel [J]. Journal of Iron and Steel Research (钢铁研究学报), 1994(04): 18-23.

[2] Wu Y Q (吴亦泉), Yang J ( ), Zhu K ( ), et al. Effect of Ca content on inclusion evolution in shipbuilding structure steel [J]. Bao-Steel Technology (宝钢技术), 2014(04): 1-5.

[3] Lu F ( ), Cao F Y (曹凤豫), Li C J (李承基), et al. Alloying behavior of Ca in 58CrV steel [J]. Acta Metallurgica Sinica (金属学报), 1992,28(06): 7-12.

[4] Gao D C (高德春), Li C J (李承基), Cao F Y (曹凤豫). Effect of Ca on microstructures and impact toughness of 42MnCr steel [J]. Transactions of Metal Heat Treatment (金属热处理学报), 1993, 14(03): 9-14.

[5] Li D J (李大经), Pan J W (潘健武). Ca-treatment of seawater-resistant low alloy steels and its effects on properties of steels [J]. Journal of Anhui University of Technology (马鞍山钢铁学院学报), 1984(2): 24-33.

[6] Hu Y L (胡裕龙), Sun W ( ), Kong X D (孔小东), et al. Effect of calcium-treatment on resistance against pitting corrosion of AH36 hull structural steel [J]. Materials Science & Technology (材料科学与工艺), 2015, 23(04): 121-128.

[7] Kim K Y, Chung Y H, Hwang Y H, et al. Effects of calcium modification on the electrochemical and corrosion properties of weathering steel [J]. Corrosion, 2002, 58(6): 479-489.

[8] Luo X B (罗小兵), Chai F ( ), Su H ( ), et al. Corrosion resistant ship hull in wet-dry environments contained H2S [J]. Journal of Iron and Steel Research (钢铁研究学报), 2013, 25(08): 51-57.

[9] Liang C F (梁彩凤), Hou W T (侯文泰). Atmospheric corrosivity for steels [J]. Journal of Chinese Society for Corrosion and Protection (中国腐蚀与防护学报), 1998, 18(1): 1-6.

[10] Cui L ( ), Yang S W (杨善武), Wang S T (王树涛), et al. Corrosion behavior and corrosion products of a low carbon bainite steel in three kinds of typical environments [J]. Journal of University of Science and Technology Beijing (北京科技大学学报), 2009, 31(3), 306-311.

[11] Dong J ( ), Dong J H (董俊华), Han E H (韩恩厚), et al. Corrosion behavior of rusted mild steel under means of wet/dry alternate conditions [J]. Corrosion Science and Protection Technology (腐蚀科学与防护技术), 2006, 18(6): 414-417.

[12] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corrosion Science, 1999, 41(9): 1687-1702.

[13] Suzuki I, Masuko N, Hisamatsu Y. Electrochemical properties of iron rust [J].Corrosion Science, 1979,19(8): 521-535.

[14] Chen W J (陈文娟), Hao L ( ), Dong J H (董俊华), et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metallurgica Sinica (金属学报), 2014, 50(7): 802-810.

[15] Dong J H (董俊华), Ke W ( ). The accelerated test of simulated atmospheric corrosion and the rust evolution of low carbon steel [J]. Journal of Electrochemistry (电化学), 2009, 15(2): 170-178.

文章导航

/