欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

液态Wood合金在NaOH电解质溶液中的电毛细变形现象

  • 张国堤 ,
  • 林巧力 ,
  • 陈剑虹 ,
  • 曹睿
展开
  • 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,甘肃 兰州 730050

收稿日期: 2016-04-11

  修回日期: 2016-11-10

  网络出版日期: 2016-11-15

基金资助

国家自然科学基金项目(No.51301083,No.51665031),甘肃省杰出青年基金(No.1506RJDA087)资助

Electric current induced flow and electrocapillary deformation of liquid Wood alloy in NaOH aqueous solution

  • ZHANG Guo-di ,
  • LIN Qiao-li ,
  • CHENG Jian-hong ,
  • CAO Rui
Expand
  • State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology 730050 ,Lanzhou, China

Received date: 2016-04-11

  Revised date: 2016-11-10

  Online published: 2016-11-15

摘要

本文研究了液态Wood合金在氢氧化钠电解质溶液中,通过施加外电场,进而诱发液态金属电毛细变形的现象. 当石墨电极伸入金属液滴内部时,通电后在金属表面发生的电极反应,促使金属表面形成氧化膜或去除氧化膜. 由于氧化膜与液态金属的表面张力存在巨大差异,通电后电极极性的变化可实现金属液滴形状的快速可逆变形.在液态金属与电解质溶液之间形成的双电子层中,当两侧聚集同极性电荷时将降低界面张力.为维持通电后体系自由能最小,将迫使液体金属增大与溶液之间的界面面积,在宏观上表现为液体金属的变形,由于液态金属与氢氧化钠反应后自身携带负电荷,在电场力的作用下可有效地驱动液态金属在电解质溶液中的运动.

本文引用格式

张国堤 , 林巧力 , 陈剑虹 , 曹睿 . 液态Wood合金在NaOH电解质溶液中的电毛细变形现象[J]. 电化学, 2017 , 23(4) : 429 -434 . DOI: 10.13208/j.electrochem.160411

Abstract

The phenomena of the electric current induced flow and electrocapillary deformation for a liquid Wood alloy in a NaOH electrolyte were studied. Electrocapillary behaviors for the liquid Wood alloy in NaOH electrolytes by applying external low voltages were investigated. The electrode reaction (redox reaction) induced the formation or removing removal of an oxide film, and further caused the drop deformation by decreasing or increasing an interfacial tension. The same polar charge in the electric double layer would also decrease the interfacial tension. In order to maintain the stability of system, the contact area of the interface would be expanded, and which induced induces the drop deformation macroscopically. When the liquid metal was charged by the chemical reaction in the solution, the electric field force is became an effective way to drive its movement in the electrolyte.

参考文献

[1] Rashed Khan M, Hayes GJ, So J-H, et al. A frequency shifting liquid metal antenna with pressure responsiveness. Appl Phys Lett 2011;99:013501.

[2] So J-H, Thelen J, Qusba A, et al. Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Adv Funct Mater 2009;19:3632-7.

[3] Mumcu G, Dey A, Palomo T. Frequency-Agile. Bandpass Filters Using Liquid Metal Tunable Broadside Coupled Split Ring Resonators. IEEE Microwave Compon Lett 2013;23:187-9.

[4] Jackel JL, Hackwood S, Veselka JJ, Beni G. Electrowetting switch for multimode optical fibers. Appl Opt 1983;22:1765-70.

[5] Krupenkin T, Taylor JA. Reverse electrowetting as a new approach to high-power energy harvesting. Nat Commun 2011;2:448.

[6] Chen L, Bonaccurso E. Electrowetting — From statics to dynamics. Adv Colloid Interface Sci 2014;210:2-12.

[7] Junghoon L, Chang-Jin K. Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems 2000;9:171-80.

[8] Lippmann G. Relation entre les ph´enom`enes´electriques et capillaires. Ann Chim Phys 1875;5:494-549.

[9] Zhong Y, Guo Q, Li S, et al. Thermal and mechanical properties of graphite foam/Wood’s alloy composite for thermal energy storage. Carbon 2010;48:1689-92.

[10] Massalski TB. Binary phase diagram (CD-ROM). ASM International 1996.

[11] Vancauwenberghe V, Di Marco P, Brutin D. Wetting and evaporation of a sessile drop under an external electrical field: A review. Colloids Surf, A 2013;432:50-6.

[12] Wang L, Liu J. Electromagnetic rotation of a liquid metal sphere or pool within a solution. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2015;471.

[13] Gough RC, Morishita AM, Dang JH, et al. Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro and Nano Systems Letters 2015;3:1-9.

[14] Tang S-Y, Sivan V, Khoshmanesh K, et al. Electrochemically induced actuation of liquid metal marbles. Nanoscale 2013;5:5949-57.

[15] Sheng L, Zhang J, Liu J. Diverse Transformations of Liquid Metals Between Different Morphologies. Adv Mater 2014;26:6036-42.

[16] Gough RC, Morishita AM, Dang JH, et al. Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications. IEEE Access 2014;2:874-82.

[17] Tang S-Y, Khashayar Khoshmanesh, Vijay Sivan, et al. Liquid metal enabled pump. PNAS 2014;111:3304-9.

[18] Yuan B, Tan S, Zhou Y, et al. Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. Science Bulletin 2015;60:1203-10.

文章导航

/