欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

基于WS2量子点材料固定葡萄糖氧化酶的直接电化学及其生物传感研究

  • 李晨露 ,
  • 彭花萍 ,
  • 黄种南 ,
  • 盛依伦 ,
  • 吴佩文 ,
  • 林新华
展开
  • 1. 福建医科大学附属第一医院高压氧室,福建 福州 350005; 2. 福建医科大学药学院药物分析系,福建 福州 350122; 3. 福建医科大学附属第一医院内分泌科,福建 福州 350005

收稿日期: 2016-08-29

  修回日期: 2016-09-23

  网络出版日期: 2016-10-21

基金资助

国家自然科学基金项目(No.21405015, No.81400805),福建省自然科学基金资助项目(No.2014J05092, No.2016J01449),大学生创新创业训练项目基金(No.C1634)资助

Direct Electrochemistry of Glucose Oxidase Based on WS2 Quantum Dots and its Biosensing Application

  • LI Chen-lu ,
  • PENG Hua-ping ,
  • HUANG Zhong-nan ,
  • SHENG Yi-lun ,
  • WU Pei-wen ,
  • LIN Xin-hua
Expand
  • 1. Department of high pressure oxygen,, The Affiliated First Hospital, Fujian Medical University, Fuzhou 350005 , China;2. Department of Pharmaceutical Analysis of the Fujian Medical University,Fuzhou 350122,China;3. Department of Endocrinology, The Affiliated First Hospital, Fujian Medical University, Fuzhou 350005 , China

Received date: 2016-08-29

  Revised date: 2016-09-23

  Online published: 2016-10-21

摘要

采用水热法制备水溶性WS2量子点(WS2 QDs)材料,并将该材料进一步用于葡萄糖氧化酶(GOx)的有效固定,构建GOx/W2 QDs/GCE传感界面. 采用透射电镜、紫外-可见光谱和电化学等方法对材料的形貌、GOx的固定化过程,以及传感器的直接电化学和电催化性能进行了表征. 结果表明,WS2 QDs材料能够有效促进GOx与电极之间的直接电子转移. 并且,基于该传感器对葡萄糖良好的电催化作用,该方法有效实现了对葡萄糖的高灵敏检测,其线性范围为25 ~ 100 μmol·L-1和100 ~ 600 μmol·L-1,检测限为5.0 μmol·L-1(S/N=3). 该传感器具有良好的选择性、重现性和稳定性,可用于实际样品血糖的分析测定.

本文引用格式

李晨露 , 彭花萍 , 黄种南 , 盛依伦 , 吴佩文 , 林新华 . 基于WS2量子点材料固定葡萄糖氧化酶的直接电化学及其生物传感研究[J]. 电化学, 2017 , 23(1) : 53 -58 . DOI: 10.13208/j.electrochem.160829

Abstract

In this study, a novel electrochemical glucose biosensor has been developed by immobilizing glucose oxidase (GOx) on tungsten disulfide quantum dots (WS2 QDs) on the surface of glassy carbon electrode (GCE). Transmission electron microscopy, UV-vis spectroscopy and cyclic voltammetry were employed to characterize the morphology, structure, and electrochemical behaviors of the as-prepared WS2 QDs and the biofilm modified electrode. The results suggested that the WS2 QDs could accelerate the electron transfer between the electrode and the immobilized enzyme, which enabled the direct electrochemistry of GOx without any electron mediator. Besides, the immobilized GOx in WS2 QDsfilm exhibited excellent electrocatalytic activity toward oxidation of glucose due to the excellent biocompatibility of the WS2 QDs. The proposed GOx/WS2 QDs biofilm electrode exhibited a linear response to glucose concentration in the ranges of 25 ~ 100 μmol·L-1 and 100 ~ 600 μmol·L-1, and the detection limit of the biosensor was as low as 5.0 μmol·L-1. The biosensor also exhibited good selectivity, reproducibility and long-term stability, which might be potenially used for the detection of the real samples.

参考文献

[1]        Wang J. Glucose biosensors: 40 years of advances and challenges[J]. Sensors Update, 2002, 10(1): 107-119.

[2]        Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene[J]. Analytical Chemistry, 2009, 81(6): 2378-2382.

[3]        Wang J. Electrochemical glucose biosensors[J]. Chemical Reviews, 2008, 108(2): 814-825.

[4]        Zhang J, Yu X, Guo W B,  et al. Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor[J]. Nanoscale, 2016, 8(17): 9382-9389.

[5]        Das P, Das M, Chinnadayyala S, et al. Recent advances on developing 3rd generation enzyme electrode for biosensor applications[J]. Biosensors and Bioelectronics, 2016, 79: 386-397.

[6]        Chen Y, Tan C L, Zhang H, et al. Two-dimensional graphene analogues for biomedical applications. Chemical Society Reviews[J]. 2015, 44(9): 2681-2701.

[7]        Lin L X, Xu Y X, Zhang SW, et al. Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling[J]. ACS Nano, 2013, 7(9): 8214-8223.

[8]        Gutierrez H, Perea-Lopez N, Elias A, et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers[J]. Nano Letters 2013, 13 (8): 3447-3454.

[9]        Guo X R, Wang Y, Wu F Y, et al. The use of tungsten disulfide dots as highly selective, fluorescent probes for analysis of nitrofurazone[J]. Talanta, 2015, 144: 1036-1043.

[10]     Peng H P, Qiu J D, Zhang L, et al. Facile preparation of novel core–shell enzyme–Au–polydopamine–Fe3O4 magnetic bionanoparticles for glucose sensor[J]. Biosensors and Bioelectronics, 2013, 42: 293-299.

[11]     Zhao S, Zhang K, Bai Y, et al. Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis[J]. Bioelectrochemistry, 2006, 69(2): 158-163.

[12]     Su S, Sun H, Xu F, et al. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles[J]. Microchimica Acta, 2014, 181(13): 1497-1503.

[13]     Liu J, He Z M, Khoo S Y, et al. A new strategy for achieving vertically-erected and hierarchical TiO2 nanosheets array/carbon cloth as a binder-free electrode for protein impregnation, direct electrochemistry and mediator-free glucose sensing[J]. Biosensors and Bioelectronics, 2016, 77: 942-949.

[14]     Shan C, Yang H, Han D, et al. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing[J]. Biosensors and Bioelectronics, 2010, 25(5): 1070-1074.

文章导航

/