欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

锂硫电池用碳化钛涂层隔膜性能探究

  • 方建华 ,
  • 曹勇 ,
  • 杨茂萍 ,
  • 郑明森 ,
  • 董全峰
展开
  • 1. 合肥国轩高科动力能源有限公司,合肥 230001; 2. 厦门大学化学化工学院,厦门 361005

收稿日期: 2016-06-06

  修回日期: 2016-08-10

  网络出版日期: 2016-09-28

基金资助

国家高技术研究发展计划(863计划)(No. 2015AA034600)资助

An Investigation in the Performance of Lithium Sulfur Battery with a TiC Coated Separator

  • FANG Jian-hua ,
  • CAO Yong ,
  • YANG Mao-ping ,
  • ZHENG Ming-sen ,
  • DONG Quan-feng
Expand
  • 1Hefei Guoxuan High-tech. Co. Ltd., Hefei230001, Anhui, China; 2 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2016-06-06

  Revised date: 2016-08-10

  Online published: 2016-09-28

摘要

为提高锂硫电池的比容量和循环性能,本文使用纳米碳化钛(TiC)作为涂层制备得到TiC/Celgard涂层隔膜,并探究其对锂硫电池性能的影响. 电化学性能测试结果表明,涂层隔膜能有效提高电池在不同倍率下的比容量以及电池的循环性能,在2C倍率下仍表现出650 mAh·g-1的比容量,0.5C循环100周容量仍能保持在843.1 mAh·g-1.

本文引用格式

方建华 , 曹勇 , 杨茂萍 , 郑明森 , 董全峰 . 锂硫电池用碳化钛涂层隔膜性能探究[J]. 电化学, 2017 , 23(1) : 86 -90 . DOI: 10.13208/j.electrochem.160606

Abstract

To improve the specific capacity and cycle stability of lithium-sulfur (Li-S) battery, a TiC/Celgard coating separator was developed and its performance in Li-S battery was investigated. The electrochemical test results confirmed that the TiC coating layer could significantly increase the capacity and cycle stability. At a high rate of 2C, it still delivered the capacity of 650 mAh?g-1. At 0.5C, the specific capacity was maintained at 841.3 mAh?g-1 after 100 cycles.

参考文献

1.            P. G. Bruce, S. A. Freunberger, L. J. Hardwick et al. Li-O2 and Li-S batteries with high energy storage [J], Nature materials, 2012, 11(1): 19-29.

2.            Schuster, J., He, G., Nazar, L. F. et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries[J]. Angew. Chem. Inter. Ed., 2012, 51(15): 3591-35953.     

3.      N. Jayaprakash, J. Shen, L. A. Archer, et al. Porous Hollow Carbon@ Sulfur Composites for HighPower LithiumSulfur Batteries [J]. Angew. Chem., 2011, 123 (96): 6026-6030.

4.            Zhang, C., Wu, H. B., Lou, X. W. D. et al. Confining Sulfur in Double-ShelledHollow Carbon Spheres for Lithium–Sulfur Batteries[J]. Angew. Chem., 2012, 124(38):9730-97335.  

5.     Wang, J., Chen, J., Konstantinov, K., et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries[J]. Electrochim. Acta, 2006, 51(22): 4634-4638.

6.            Song, M.-S., Han, S.-C., Kim, H.-S.,et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries[J]. J. Electrochem. Soc., 2004, 151(6): A791-A795.

7.            J.-J. Chen, R.-M. Yuan, Q.-F. Dong, et al. Conductive Lewis Base Matrix to Recover the Missing Link of Li2S8 during the Sulfur Redox Cycle in Li–S Battery [J]. Chem. Mater., 2015, 27(6): 2048-2055.

8.      Cao, Yong, Li, Xi-long, Quan-feng Dong, et al. Ultra-high Rates and Reversible Capacity of Li-S Battery with a Nitrogen-doping Conductive Lewis Base Matrix [J]. Electrochimica Acta, 2016,192: 467-474.

9.     Tao, X., Wang, J., Ying, Z., et al. Strong Sulfur Binding with Conducting Magnéli-Phase TinO2n–1 Nanomaterials for Improving Lithium–Sulfur Batteries [J]. Nano Letters, 2014, 14(9): 5288-5294.

10.          X. Liang, C. Hart, L. F. Nazar, et al. A highly efficient polysulfide mediator for lithium–sulfur batteries [J]. Nat. Commun., 2015, 6, 10.1038/ncomms6682.

11.          Z. W. Seh, P.-C. Hsu, Y. Cui, et al. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries [J]. Nat. commun., 2013, 4: doi:10.1038/ncomms2327.

12.   Q. Pang, D. Kundu, M. Cuisinier and L. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries [J]. Nat. commun., 2014, 5. doi:10.1038/ncomms5759.

文章导航

/