欢迎访问《电化学(中英文)》期刊官方网站,今天是
能源电化学材料近期研究专辑(南开大学 陈军教授)

复杂一维纳米材料的构筑及储钠性能

  • 张远杰 ,
  • 李 威 ,
  • 王选朋 ,
  • 牛朝江 ,
  • 麦立强
展开
  • 材料复合新技术国家重点实验室,武汉理工大学,湖北 武汉 430070

收稿日期: 2016-06-07

  修回日期: 2016-09-28

  网络出版日期: 2016-10-09

基金资助

科技部“国家重大科学研究计划课题”(No. 2013CB934103)、国家自然科学基金创新研究群体(No. 51521001)、国家自然科学基金杰出青年基金(No. 51425204)、国家国际科技合作专项(No. 2013DFA50840)资助

Construction and Sodium Storage Performance of Complex One-Dimensional Nanomaterials

  • ZHANG Yuan-jie ,
  • LI Wei ,
  • WANG Xuan-peng ,
  • NIU Chao-jiang ,
  • MAI Li-qiang
Expand
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei Wuhan 430070, China

Received date: 2016-06-07

  Revised date: 2016-09-28

  Online published: 2016-10-09

摘要

一维纳米材料因其独特的结构和物化性质而被广泛应用于能源存储与转换等领域. 钠离子电池由于钠资源储量丰富和成本低廉等特点而有望用于大规模能源存储. 随着能源需求的不断增长和研究的日益深入,一维纳米材料也经历着结构从简单到复杂、性能从一般到优异的演变. 因此,构筑结构复杂独特、储钠性能优异的一维纳米材料已成为储能领域的热点之一. 结合当前的研究热点和本课题组的研究进展,本文重点阐述了有机酸辅助干燥法、水热法和静电纺丝法制备复杂一维纳米材料的详细机理及其储钠性能,材料包括束状纳米线、介孔纳米管、豌豆状纳米管和离子预嵌入纳米带等,并对它们的结构与储钠性能相关性进行了详细分析. 这为一维纳米材料后续的研究和应用提供了一定的指导和帮助.

本文引用格式

张远杰 , 李 威 , 王选朋 , 牛朝江 , 麦立强 . 复杂一维纳米材料的构筑及储钠性能[J]. 电化学, 2016 , 22(5) : 477 -488 . DOI: 10.13208/j.electrochem.160547

Abstract

Abstract: One-dimensional nanomaterials have been widely studied in energy storage and conversion fields because of their unique structure and physicochemical properties. Sodium-ion batteries are highly promising and attractive for large-scale energy storage due to the truly abundant sodium resources and low cost. With the growing demand of energy and deepening of research, the evolution of structures and properties of one-dimensional nanomaterials are also experiencing from simplicity to complexity and from ordinary to excellence. Therefore, constructing complex superior one-dimensional nanomaterials has become one of the hotspot in energy storage. Based on the new advance in this field and Mai group’s work, this review focuses on the construction mechanism and sodium storage performance of complex one-dimensional nanomaterials. These nanomaterials include bundled nanowires, hierarchical zigzag nanowires, mesoporous nanotubes, pea-like nanotubes and ion pre-intercalated nanobelts, which are constructed by organic acid-assisted method, hydrothermal method and electrospinning method, etc. Meanwhile, the relationships between structure and sodium storage performance of complex one-dimensional nanomaterials are also discussed. The above mentioned progresses provide important guidance and assistance for the further development of one-dimensional nanomaterials.

参考文献

[1] Luo W, Shen F, Bommier C, et al. Na-ion battery anodes: materials and electrochemistry[J]. Accounts of Chemical Research, 2016, 49(2): 231-240.

[2] Slater M D, Kim D H, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958.

[3] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.

[4] Yang Z G, Zhang J L, Kintner-Meyer M, et al. Electrochemical energy storage for green grid[J]. Chemical  Reviews, 2011, 11(5): 3577-3613.

[5] Pan H L, Hu Y S, Chen L Q, et al. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmengtal Science, 2013, 6(8): 2338-2360.

[6] Gu M, Kushima A, Shao Y Y, et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries[J]. Nano Letters, 2013, 13(11): 5203-5211.

[7] Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(15): 2878-2887.

[8] Ma X Y, Luo W, Yan M Y, et al. In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices[J]. Nano Energy, 2016, 24: 165-188.

[9] Li H (李泓), Lv Y C (吕迎春). A review on electrochemical energy storage[J]. Journal of Electrochemistry (电化学), 2015, 21(5): 412-424.

[10] Liu J X(刘进轩), Xiang J(向娟), Tian Z Q(田中群), et al. Substrates made by electrodeposition for measuring electrical properties of one dimensional nanomaterials[J]. Journal of Electrochemistry (电化学), 2004, 10(1): 20-26.

[11] Xu X, Yan M Y, Tian X C, et al. In situ investigation of Li and Na ion transport with single nanowire electrochemical devices[J]. Nano Letters, 2015, 15(6): 3879-3884.

[12] Mai L Q, Tian X C, Xu X, et al. Nanowire electrodes for electrochemical energy storage devices[J]. Chemical Reviews, 2014, 114(23): 11828-11862.

[13] Liao J Y, Manthiram A. High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage[J]. Nano Energy, 2015, 18: 20-27.

[14] Peng M H, Li B, Yan H J, et al. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries[J]. Angewandte Chemie International Edition. 2015, 54(22): 6452 -6456.

[15] Liu C Y, Zhang N, Kang H Y, et al. WS2 nanowires as a high-performance anode for sodium-ion batteries[J]. Chemistry-A European Journal. 2015, 21(33): 11878–11884.

[16] Wang X P, Niu C J, Meng J S, et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability[J]. Advanced Energy Materials, 2015, 5(17): 1500716.

[17] Dong Y F, Li S, Zhao K N, et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes[J]. Energy & Environmental Science, 2015, 8(4): 1267-1275.

[18] Ren W H, Zheng Z P, Xu C, et al. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries[J]. Nano Energy, 2016, 25: 145-153.

[19] Nie C G(聂茶庚), Gong Z L(龚正良), Sun L(孙岚), et al. Lithium insertion into TiO2(B) nanobelts synthesized by the "soft chemical" method[J]. Journal of Electrochemistry (电化学), 2004, 10(3): 330-333.

[20] Wei N, Cui H Z, Song Q, et al. Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation[J]. Applied Catalysis B: Environmental, 2016, doi: 10.1016/j.apcatb.2016.05.040.

[21] Xia W W, Xu F, Zhu C Y, et al. Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy[J]. Nano Energy, 2016, 27: 447-456.

[22] Yuan S, Liu Y B, Xu D, et al. Pure single-crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium-ion batteries[J]. Advance Science, 2015, 2(3), 1400018.

[23] Sun Y, Li C S, Yang Q R, et al. Electrochemically active, novel layered m-ZnV2O6 nanobelts for highly rechargeable Na-ion energy storage[J]. Electrochimica Acta, 2016, 205: 62–69.

[24] Wei Q L, Jiang Z Y, Tan S S, et al. Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18211-18217.

[25] Zhang H F(张宏芳), Sheng Q L(盛庆林), Zheng J B(郑建斌). Electrocalytic oxidation of hydrazine at rutin carbon nanotubes modified electrode[J]. Journal of Electrochemistry (电化学), 2011, 17(1): 107-111.

[26] Ramanathan M, Patil M, Epur R, et al. Gold-coated carbon nanotube electrode arrays: immunosensors for impedimetric detection of bone biomarkers[J]. Biosensors & Bioelectronics, 2016, 77: 580-588.


[27] Shang C Q(商超群), Yang H Y(杨海燕), Zhou X H(周新红), et al. Preparation and electrochemical performance of TiN@MnO fibers coaxial electrospinning[J]. Journal of Electrochemistry(化学), 2012, 18(3): 257-263.

[28] Zhang X Q, Li X N, Liang J W, et al. Synthesis of MoS2@C nanotubes via the kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries[J]. Small, 2016, 12(18): 2484–2491.

[29] Wang S, Wang W, Zhan P, et al. 3D flower-like NaHTi3O7 nanotubes as high performance anodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(32): 16528–16534.

[30] Ni J F, Fu S D, Wu C, et al. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage[J]. Advanced materials, 2016, 28(11): 2259-2265.

[31] Niu C J, Meng J S, Wang X P, et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis[J]. Nature Communications, 2015, 6: 7402.

文章导航

/