锂硫(硒)电池中的界面问题与解决途径
收稿日期: 2016-07-08
修回日期: 2016-08-08
网络出版日期: 2016-08-12
基金资助
国家自然科学基金项目(51225204, U1301244),国家重点研发计划项目(2016YFB0100100),中国科学院先导项目(XDA09010300)资助
Lithium-Sulfur (Selenium) Batteries: Interface Issues and Solving Strategies
Received date: 2016-07-08
Revised date: 2016-08-08
Online published: 2016-08-12
李念武 , 殷雅侠 , 郭玉国 . 锂硫(硒)电池中的界面问题与解决途径[J]. 电化学, 2016 , 22(6) : 553 -560 . DOI: 10.13208/j.electrochem.160566
[1] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(2): 19-29.
[2] Cao R G, Xu W, Lv D P, et al. Anodes for rechargeable lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16).
[3] Ji X L, Nazar L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry., 2010, 20(44): 9821-9826.
[4] Manthiram A, Chung S-H, Zu C. Lithium-Sulfur batteries: progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006.
[5] Manthiram A, Fu Y, Chung S-H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.
[6] Song M K, Cairns E J, Zhang Y G. Lithium/sulfur batteries with high specific energy: old challenges and new opportunities[J]. Nanoscale, 2013, 5(6): 2186-2204.
[7] Wang J L, He Y S, Yang J. Sulfur-Based composite cathode materials for high-energy rechargeable lithium batteries[J]. Advanced Materials, 2015, 27(3): 569-575.
[8] Yang C P, Yin Y X, Guo Y G. Elemental selenium for electrochemical energy storage[J]. Journal of Physical Chemistry Letters, 2015, 6(2): 256-266.
[9] Yang Y, Zheng G Y, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032.
[10] Yin Y X, Xin S, Guo Y G, et al. Lithium-Sulfur batteries: electrochemistry, materials, and prospects[J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186-13200.
[11] Ma J, Hu P, Cui G, et al. Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries[J]. Chemistry of Materials, 2016, 28(11): 3578-3606.
[12] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[13] Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.
[14] Li Z, Yuan L X, Yi Z Q, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials, 2014, 4(7).
[15] Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3(10): 1531-1537.
[16] Ye H, Yin Y X, Xin S, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(22): 6602-6608.
[17] Zheng S Y, Han P, Han Z, et al. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery[J]. Scientificc Repports-Uk, 2014, 4.
[18] Zheng S Y, Wen Y, Zhu Y J, et al. In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes[J]. Advanced Energy Materials, 2014, 4(16).
[19] Xin S, Yin Y X, Wan L J, et al. Encapsulation of sulfur in a hollow porous carbon substrate for superior Li-S batteries with long lifespan[J]. Particle & Particle Systems Characterization, 2013, 30(4): 321-325.
[20] Yang C P, Xin S, Yin Y X, et al. An Advanced Selenium-Carbon Cathode for Rechargeable Lithium-Selenium Batteries[J]. Angewandte Chemie-International Edition, 2013, 52(32): 8363-8367.
[21] Liu Y X, Si L, Zhou X S, et al. A selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries[J]. Journal of Materials Chemistry A, 2014, 2(42): 17735-17739.
[22] Ye H, Yin Y X, Zhang S F, et al. Advanced Se-C nanocomposites: a bifunctional electrode material for both Li-Se and Li-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(33): 13293-13298.
[23] Zeng L, Zeng W, Jiang Y, et al. A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries[J]. Advanced Energy Materials, 2015, 5(4), Doi: 10.1002/aenm.201401377.
[24] Li X N, Liang J W, Zhang K L, et al. Amorphous S-rich S1-xSex/C (x <= 0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte[J]. Energy & Environmental Science, 2015, 8(11): 3181-3186.
[25] Wang J L, Yang J, Wan C R, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Advanced Functional Materials, 2003, 13(6): 487-492.
[26] Fanous J, Wegner M, Grimminger J, et al. Structure-Related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(22): 5024-5028.
[27] Wang L, He X M, Li J J, et al. Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries[J]. Journal of Materials Chemistry, 2012, 22(41): 22077-22081.
[28] Guo J, Wen Z, Wang Q, et al. A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life[J]. Journal of Materials Chemistry A, 2015, 3(39): 19815-19821.
[29] Yin L C, Wang J L, Yu X L, et al. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries[J]. Chemical Communications, 2012, 48(63): 7868-7870.
[30] Yin L C, Wang J L, Lin F J, et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries[J]. Energy & Environmental Science, 2012, 5(5): 6966-6972.
[31] Li N W, Yin Y X, Guo Y G. Three-dimensional sandwich-type graphene@microporous carbon architecture for lithium-sulfur batteries[J]. Rsc Advances, 2016, 6(1): 617-622.
[32] Yang C P, Yin Y X, Ye H, et al. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8789-8795.
[33] Wang X, Gao Y, Wang J, et al. Chemical adsorption: another way to anchor polysulfides[J]. Nano Energy, 2015, 12: 810-815.
[34] Wang Z, Dong Y, Li H, et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications, 2014, 5: 5002.
[35] Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014, 5: 4759.
[36] Tao X Y, Wang J G, Ying Z G, et al. Strong sulfur binding with conducting magneli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014, 14(9): 5288-5294.
[37] Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015, 6: 5682.
[38] Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016, 7: 11203.
[39] Ji L W, Rao M M, Zheng H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133(46): 18522-18525.
[40] Qiu Y, Li W, Zhao W, et al. High-Rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters, 2014, 14(8): 4821-4827.
[41] Tang C, Zhang Q, Zhao M-Q, et al. Nitrogen-Doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(35): 6100-6105.
[42] Chen H W, Wang C H, Dai Y F, et al. Rational design of cathode structure for high rate performance lithium-sulfur batteries[J]. Nano Letters, 2015, 15(8): 5443-5448.
[43] Du W C, Yin Y X, Zeng X X, et al. Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3584-3590.
[44] You Y, Zeng W C, Yin Y X, et al. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batteries[J]. Journal of Materials Chemistry A, 2015, 3(9): 4799-4802.
[45] Xiao Z, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(18): 2891-2898.
[46] Ding B, Shen L, Xu G, et al. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery[J]. Electrochimica Acta, 2013, 107(0): 78-84.
[47] Yang Y, Yu G H, Cha J J, et al. Improving the performance of lithium-sulfur batteries by conductive polymer coating[J]. Acs Nano, 2011, 5(11): 9187-9193.
[48] Li N W, Zheng M B, Lu H L, et al. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating[J]. Chemical Communications, 2012, 48(34): 4106-4108.
[49] Li G C, Li G R, Ye S H, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials, 2012, 2(10): 1238-1245.
[50] Song M K, Zhang Y G, Cairns E J. A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance[J]. Nano Letters, 2013, 13(12): 5891-5899.
[51] Wang L, Wang D, Zhang F X, et al. Interface chemistry guided long-cycle-life Li-S battery[J]. Nano Letters, 2013, 13(9): 4206-4211.
[52] Chung S-H, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(43): 7352-7357.
[53] Seh Z W, Li W Y, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4: 1331.
[54] Zhang J, Ye H, Yin Y X, et al. Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2014, 23(3): 308-314.
[55] Ma G, Wen Z, Jin J, et al. Enhancement of long stability of Li-S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode[J]. Rsc Advances, 2014, 4(41): 21612-21618.
[56] Ma G, Wen Z, Jin J, et al. Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2014, 2(27): 10350-10354.
[57] Wu F, Lee J T, Nitta N, et al. Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries: mechanisms of performance enhancement[J]. Advanced Materials, 2015, 27(1): 101-108.
[58] Yan Y(颜洋), Yin Y X(殷雅侠), Guo Y G(郭玉国), et al. Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries[J]. Science China-Chemistry(中国科学 化学), 2014, 57(11): 1564-1569.
[59] Suo L M, Hu Y S, Li H, et al. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481.
[60] Zheng J M, Gu M, Chen H H, et al. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(29): 8464-8470.
[61] Yan Y, Yin Y X, Xin S, et al. High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte[J]. Electrochimica Acta, 2013, 91: 58-61.
[62] Cheng X B, Peng H J, Huang J Q, et al. Dendrite-Free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014, 10(21): 4257-4263.
[63] Zhang X L, Wang W K, Wang A B, et al. Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2014, 2(30): 11660-11665.
[64] Huang C, Xiao J, Shao Y Y, et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nature Communications, 2014, 5: 3015.
[65] Li N W, Yin Y X, Yang C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858.
[66] Wu M F, Wen Z Y, Liu Y, et al. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries[J]. Journal of Power Sources, 2011, 196(19): 8091-8097.
[67] Ma G Q, Wen Z Y, Wu M F, et al. A lithium anode protection guided highly-stable lithium-sulfur battery[J]. Chemical Communications, 2014, 50(91): 14209-14212.
[68] Yang C-P, Yin Y-X, Zhang S-F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058.
[69] Liang Z, Zheng G, Liu C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916.
/
〈 |
|
〉 |