欢迎访问《电化学(中英文)》期刊官方网站,今天是
界面电化学近期研究专辑(厦门大学 毛秉伟教授)

基于锂离子电池老化行为的析锂检测

  • 张剑波 ,
  • 苏来锁 ,
  • 李新宇 ,
  • 葛昊 ,
  • 张雅琨 ,
  • 李哲
展开
  • 1. 清华大学,汽车安全与节能国家重点实验室,北京 100084; 2. 北京理工大学,北京电动车辆协同创新中心,北京 100081

收稿日期: 2016-05-27

  修回日期: 2016-07-06

  网络出版日期: 2016-07-14

基金资助

国家自然科学基金项目(51577104,51377097),中国博士后基金(2014M560079)资助

Lithium Plating Identification from Degradation Behaviors of Lithium-Ion Cells

  • ZHANG Jian-bo ,
  • SU Lai-suo ,
  • LI Xin-yu ,
  • GE Hao ,
  • ZHANG Ya-kun ,
  • LI Zhe
Expand
  • 1. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China;2. Beijing Co-innovation Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China

Received date: 2016-05-27

  Revised date: 2016-07-06

  Online published: 2016-07-14

摘要

析锂会极大地影响锂离子电池的寿命和安全性,锂离子电池的析锂检测十分必要. 本文根据锂离子电池的两种主要老化机理—SEI(Solid Electrolyte Interface)膜生长和析锂对老化行为上的不同影响,基于多应力作用下的锂离子电池循环老化实验结果,提出了两种检测析锂的方法,分别为内阻-容量轨迹法和阿伦尼乌斯准则法. 两种方法的判定结果具有良好的一致性. 之后,利用微分电压法区分了电池容量损失的不同来源,并进行了电池负极片EDS(Energy Dispersive Spectrometer)能谱分析,对析锂检测方法进行了验证. 本文方法只需利用电池老化过程中可测的容量和内阻等电学量,判断方法简便,可实现非解体检测;同时,利用了单次循环的微量析锂在时间尺度上的累积,对析锂工况的辨识具有较高的敏感性. 本文方法对锂离子电池的寿命加速测试、延寿使用、安全管理等具有重要意义.

本文引用格式

张剑波 , 苏来锁 , 李新宇 , 葛昊 , 张雅琨 , 李哲 . 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016 , 22(6) : 607 -616 . DOI: 10.13208/j.electrochem.160561

Abstract

Lithium plating has huge impact on the lifetime and safety of lithium-ion cells. It is, therefore, necessary to identify lithium plating. In this study, the accelerated stress tests of lithium-ion cells were conducted under different conditions with multi-stress loads. Based on the different effects of the two major aging mechanisms, namely, SEI (Solid Electrolyte Interface) layer growth and lithium plating, on the degradation behaviors, two lithium plating identification methods of resistance-capacity plot and Arrhenius plot were employed. The experimental results revealed that the two identification methods are highly consistent with each other. Furthermore, the origins of capacity loss were distinguished and the degradation mechanisms were investigated with the differential voltage analysis methods, while the cells were disassembled and the elemental compositions of the anodes were analyzed by energy dispersive spectroscopy (EDS). The results verified the applicability of the two lithium plating identification methods. The advantages of the methods developed in this study are that the capacities and resistances of the cells at different aging cycles could be readily measured without dissembling the cell. In addition, these two methods are highly sensitive, as it allows the trace amount of plated lithium in a single cycle to be accumulated among numbers of cycles. The methods proposed in this study are of great significance to the accelerated stress test, durable use and safe operation of lithium-ion cells.

参考文献

[1] Brissot C, Rosso M, Chazalviel J N, et al. In situ study of dendritic growth inlithium/PEO-salt/lithium cells[J]. Electrochimica acta, 1998, 43(10): 1569-1574.

[2] Honbo H, Takei K, Ishii Y, et al. Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding[J]. Journal of Power Sources, 2009, 189(1): 337-343.

[3] Smart M C, Ratnakumar B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of The Electrochemical Society, 2011, 158(4): A379-A389.

[4] Zinth V, von Lüders C, Hofmann M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271: 152-159.

[5] Armstrong A R, Lyness C, Panchmatia P M, et al. The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2[J]. Nature materials, 2011, 10(3): 223-229.

[6] Fan H, Li H, Fan L Z, et al. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries[J]. Journal of Power Sources, 2014, 249: 392-396.

[7] Petzl M, Danzer M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87.

[8] Su L, Zhang J, Huang J, et al. Path dependence of lithium ion cells aging under storage conditions[J]. Journal of Power Sources, 2016, 315: 35-46.

[9] Wu B, Li Z, Zhang J. Thermal Design for the Pouch-Type Large-Format Lithium-Ion Batteries I. Thermo-Electrical Modeling and Origins of Temperature Non-Uniformity[J]. Journal of The Electrochemical Society, 2015, 162(1): A181-A191.

[10] Bauer M, Guenther C, Kasper M, et al. Discrimination of degradation processes in lithium-ion cells based on the sensitivity of aging indicators towards capacity loss[J]. Journal of Power Sources, 2015, 283: 494-504.

[11] Su L, Zhang J, Wang C, et al. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments[J]. Applied Energy, 2016, 163: 201-210.

[12] Spotnitz R. Simulation of capacity fade in lithium-ion batteries[J]. Journal of Power Sources, 2003, 113(1): 72-80.

[13] Bloom I, Jansen A N, Abraham D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application[J]. Journal of Power Sources, 2005, 139(1): 295-303.

[14] Bloom I, Christophersen J, Gering K. Differential voltage analyses of high-power lithium-ion cells: 2. Applications[J]. Journal of Power Sources, 2005, 139(1): 304-313.

[15] Bloom I, Christophersen J P, Abraham D P, et al. Differential voltage analyses of high-power lithium-ion cells: 3. Another anode phenomenon[J]. Journal of power sources, 2006, 157(1): 537-542.

[16] Bloom I, Walker L K, Basco J K, et al. Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC[J]. Journal of Power Sources, 2010, 195(3): 877-882.

[17] Bernhard B, Andreas G. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources, 2014, 262: 297-302.

[18] Yvonne K, Claudia B, Julian F, et al. A new method for quantitative marking of deposited lithium by chemical treatment on graphite anodes in lithium-ion cells[J]. ChemPubSoc Europe, 2015, 21: 6062-6065.

文章导航

/