基于锂离子电池老化行为的析锂检测
收稿日期: 2016-05-27
修回日期: 2016-07-06
网络出版日期: 2016-07-14
基金资助
国家自然科学基金项目(51577104,51377097),中国博士后基金(2014M560079)资助
Lithium Plating Identification from Degradation Behaviors of Lithium-Ion Cells
Received date: 2016-05-27
Revised date: 2016-07-06
Online published: 2016-07-14
析锂会极大地影响锂离子电池的寿命和安全性,锂离子电池的析锂检测十分必要. 本文根据锂离子电池的两种主要老化机理—SEI(Solid Electrolyte Interface)膜生长和析锂对老化行为上的不同影响,基于多应力作用下的锂离子电池循环老化实验结果,提出了两种检测析锂的方法,分别为内阻-容量轨迹法和阿伦尼乌斯准则法. 两种方法的判定结果具有良好的一致性. 之后,利用微分电压法区分了电池容量损失的不同来源,并进行了电池负极片EDS(Energy Dispersive Spectrometer)能谱分析,对析锂检测方法进行了验证. 本文方法只需利用电池老化过程中可测的容量和内阻等电学量,判断方法简便,可实现非解体检测;同时,利用了单次循环的微量析锂在时间尺度上的累积,对析锂工况的辨识具有较高的敏感性. 本文方法对锂离子电池的寿命加速测试、延寿使用、安全管理等具有重要意义.
张剑波 , 苏来锁 , 李新宇 , 葛昊 , 张雅琨 , 李哲 . 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016 , 22(6) : 607 -616 . DOI: 10.13208/j.electrochem.160561
[1] Brissot C, Rosso M, Chazalviel J N, et al. In situ study of dendritic growth inlithium/PEO-salt/lithium cells[J]. Electrochimica acta, 1998, 43(10): 1569-1574.
[2] Honbo H, Takei K, Ishii Y, et al. Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding[J]. Journal of Power Sources, 2009, 189(1): 337-343.
[3] Smart M C, Ratnakumar B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of The Electrochemical Society, 2011, 158(4): A379-A389.
[4] Zinth V, von Lüders C, Hofmann M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271: 152-159.
[5] Armstrong A R, Lyness C, Panchmatia P M, et al. The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2[J]. Nature materials, 2011, 10(3): 223-229.
[6] Fan H, Li H, Fan L Z, et al. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries[J]. Journal of Power Sources, 2014, 249: 392-396.
[7] Petzl M, Danzer M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87.
[8] Su L, Zhang J, Huang J, et al. Path dependence of lithium ion cells aging under storage conditions[J]. Journal of Power Sources, 2016, 315: 35-46.
[9] Wu B, Li Z, Zhang J. Thermal Design for the Pouch-Type Large-Format Lithium-Ion Batteries I. Thermo-Electrical Modeling and Origins of Temperature Non-Uniformity[J]. Journal of The Electrochemical Society, 2015, 162(1): A181-A191.
[10] Bauer M, Guenther C, Kasper M, et al. Discrimination of degradation processes in lithium-ion cells based on the sensitivity of aging indicators towards capacity loss[J]. Journal of Power Sources, 2015, 283: 494-504.
[11] Su L, Zhang J, Wang C, et al. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments[J]. Applied Energy, 2016, 163: 201-210.
[12] Spotnitz R. Simulation of capacity fade in lithium-ion batteries[J]. Journal of Power Sources, 2003, 113(1): 72-80.
[13] Bloom I, Jansen A N, Abraham D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application[J]. Journal of Power Sources, 2005, 139(1): 295-303.
[14] Bloom I, Christophersen J, Gering K. Differential voltage analyses of high-power lithium-ion cells: 2. Applications[J]. Journal of Power Sources, 2005, 139(1): 304-313.
[15] Bloom I, Christophersen J P, Abraham D P, et al. Differential voltage analyses of high-power lithium-ion cells: 3. Another anode phenomenon[J]. Journal of power sources, 2006, 157(1): 537-542.
[16] Bloom I, Walker L K, Basco J K, et al. Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC[J]. Journal of Power Sources, 2010, 195(3): 877-882.
[17] Bernhard B, Andreas G. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources, 2014, 262: 297-302.
[18] Yvonne K, Claudia B, Julian F, et al. A new method for quantitative marking of deposited lithium by chemical treatment on graphite anodes in lithium-ion cells[J]. ChemPubSoc Europe, 2015, 21: 6062-6065.
/
〈 |
|
〉 |