欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

海水环境中典型阴离子对5083铝合金腐蚀行为的影响

  • 涂扬帆 ,
  • 冯立明 ,
  • 方志刚 ,
  • 刘海涛 ,
  • 井明华 ,
  • 管勇
展开
  • 1. 山东建筑大学材料科学与工程学院,山东 济南 250101; 2. 海军装备研究院,北京 100161; 3.中国科学院金属研究所,辽宁 沈阳 110016

收稿日期: 2016-06-14

  修回日期: 2016-07-20

  网络出版日期: 2016-08-02

基金资助

国家自然科学基金项目(51201169)资助

Influence of Typical Anions in Seawater Environments on Corrosion Behaviors of 5083 Aluminum Alloy

  • TU Yang-fan ,
  • FENG Li-ming ,
  • FANG Zhi-gang ,
  • LIU Hai-tao ,
  • JING Ming-hua ,
  • GUAN Yong
Expand
  • 1. Department of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; 2. Naval Academy of Armament, Beijing 100161, China; 3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China

Received date: 2016-06-14

  Revised date: 2016-07-20

  Online published: 2016-08-02

摘要

采用析因分析试验及动电位极化曲线、电化学阻抗谱(EIS)等测试方法,研究了海水环境因素中的典型阴离子(Cl-、 HCO3-、 SO42-交互作用对5083铝合金耐蚀性的影响. 结果表明,三种阴离子中,Cl-、HCO3-对铝合金点蚀起促进作用. Cl-与HCO3-交互作用时,在Cl-浓度一定的情况下,随着HCO3-浓度的增加,5083铝合金耐蚀性呈现出上升→下降→再上升的趋势,在70~90 mg•L-1时耐蚀性能明显降低;在HCO3-浓度一定的情况下,Cl-浓度较低时5083铝合金耐蚀性比Cl-浓度较高时差. 在Cl-、 HCO3-浓度较低情况下,SO42-具有抑制腐蚀的作用;当Cl-、 HCO3-浓度较高时,SO42-抑制腐蚀的作用不明显.

本文引用格式

涂扬帆 , 冯立明 , 方志刚 , 刘海涛 , 井明华 , 管勇 . 海水环境中典型阴离子对5083铝合金腐蚀行为的影响[J]. 电化学, 2017 , 23(4) : 466 -472 . DOI: 10.13208/j.electrochem.160614

Abstract

The interaction effects of typical anions, namely, Cl-, HCO3- and SO42-, presented in seawater environments on corrosion resistance behaviors of AA5083 aluminum alloy have been studied. The corrosion resistances of the 5083 aluminum alloy in different simulated seawater environments were tested by factorial analysis method. The polarization curves, the corrosion potentials, corrosion current densities and the breakdown potentials were examined in different concentrations of Cl-, HCO3- and SO42-.The corrosion behavior was analyzed by electrochemical impedance spectroscopy (EIS). The results showed that both Cl-,  and HCO3- could accelerate the pitting corrosion. When the concentration of Cl-,  remained constant, the corrosion resistance of AA5083 aluminum alloy increased initially with an increase in the concentration of HCO3-,and then dropped dramatically at 70~90 mg•L-1, which displayed the best corrosion resistance performance. Afterwards, the corrosion resistance increased again. The corrosion current density of AA5083 aluminum alloy was not significantly affected by SO42- when the concentrations of Cl- and HCO3- became larger. Meanwhile, when the concentration of HCO3- was fixed, the charge-transfer resistance of AA5083 aluminum alloy at a lower Cl-concentration was smaller than that at a higher Cl- concentration, and the corrosive ions could easily penetrate the native oxide film by a redox reaction with the matrix.

参考文献

[1] Ezuber H, El-Houd A, El-Shawesh F. A study on the corrosion behavior of aluminum alloys in

seawater[J]. Materials and Design, 2008, 29: 801-805.

[2] Burstein G T, Liu C, Souto R M. Origins of pitting corrosion[J]. Corrosion Engineering, Science and Technology, 2004, 39(1): 25-30.

[3] Rowland H T, Dexter S C. Effect of sea water carbon dioxide system on the corrosion of aluminum[J]. Corrosion, 1980, 36(9): 458-467.

[4] Lin L Y (林乐耘), Zhao Y H (赵月红). Severe corrosivity and its eletrochemical mechanism of seawater in Xiamen sea area to Al-Mg alloys[J]. Journal of Electrochemistry (电化学), 2003, 9(3): 299-307.

[5] Mu Z J (穆振军),Lin Z J (林志坚),Zhuang Y (庄焱), et al. Corrosion behavior of aluminum-magnesium alloy in sea areas and its electrolyte effect in Xiamen sea area[J]. Development and application of materials (材料开发与应用), 2007, 22(5): 20-24.

[6] Huang G Q (黄桂桥). Corrosion of aluminium alloys in marine environment (Ⅰ)-a summary of 16 years exposure testing in seawater full immersion zone[J]. Corrosion & protection (腐蚀与防护), 2002, 23(1): 18-23

[7] Huang G Q (黄桂桥). Corrosion of aluminium alloys in marine environment (Ⅱ)-a summary of 16 years exposure testing in seawater full immersion zone[J]. Corrosion & protection (腐蚀与防护), 2002, 23(2): 47-50.

[8] Huang G Q (黄桂桥). Corrosion of aluminium alloys in marine environment (Ⅲ)-a summary of 16 years exposure testing in seawater full immersion zone[J]. Corrosion & protection (腐蚀与防护), 2003, 24(2): 47-57.

[9] Box G E P, Hunter J S, Hunter W G. Statistics for experimenters: Design, Innovation, and Discovery, Second Edition[M]. (Zhang R C (张润楚), Liu M Q (刘民千), Yang J F (杨建峰), et al, Trans.). Beijing: China Machine Press, 2009. 105.

[10] Chen K (陈魁). Design and analysis of experiments[M]. Beijing: Tsinghua University Press, 2005. 61.

[11] Kim S J, Jang S K, Kim J I. Investigation on optimum corrosion protection potential of Al alloy in marine environment[J]. Materials Science-Poland, 2008, 26(3): 779-785.

[12] Juttner K. Electrochemical Impedance Spectroscopy (EIS) of corrosion processes on inhomogeneous surface[J], Electrochemical Acta, 1990, 35: 1501.

[13] Peng W C (彭文才), Hou J (侯健), Guo W M (郭为民), et al. Effect of temperature and dissolved oxygen on corrosion performance of alloy 5083 in seawater[J]. Equipment Environment Engineering (装备环境工程), 2010, 7(3): 22-26.

[14] Moreto J A, Marino C E B, Filho W W B. SVET, SKP, and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication[J]. Corrosion Science, 2014, 84: 31-41.

文章导航

/