阴极界面修饰层改善平面p-i-n型钙钛矿太阳能电池的光伏性能
收稿日期: 2016-06-30
修回日期: 2016-07-21
网络出版日期: 2016-07-22
基金资助
国家自然科学基金项目(No. 91333204, No. 91433117)资助
Cathode Buffer Layer for Improving Photovoltaic Performance of Planar p-i-n Perovskite Solar Cells
Received date: 2016-06-30
Revised date: 2016-07-21
Online published: 2016-07-22
有机/无机杂化金属卤化物钙钛矿半导体材料结合了有机材料良好的溶液可加工性以及无机材料优越的光电特性,近几年受到了热捧,成为太阳能电池领域一颗耀眼的明星. 伴随着钙钛矿薄膜结晶过程和形貌的优化、器件结构的改进以及电极界面材料的开发,这类有机/无机杂化金属卤化物钙钛矿太阳能电池的光电转换效率从最初的3.8%迅速提高到目前最高的22.1%. 其中界面工程在提升器件性能上发挥着极其重要的作用. 本文总结了平面p-i-n型钙钛矿太阳能电池中阴极界面修饰层(CBL)的研究进展. CBL从材料上讲可分为无机金属氧化物、金属或金属盐以及有机材料,从构成上讲可分为单层CBL、双层CBLs以及共混型CBL. 本文对这些类型的CBL分别给予详细的介绍. 最后,我们归纳出CBL在改善器件效率和稳定性上所起的作用以及理想CBL所应满足的要求,希望能为以后阴极界面修饰材料的设计提供一定的借鉴.
刘晓东 , 李永舫 . 阴极界面修饰层改善平面p-i-n型钙钛矿太阳能电池的光伏性能[J]. 电化学, 2016 , 22(4) : 315 -331 . DOI: 10.13208/j.electrochem.160148
Organic/inorganic hybrid metal halide perovskite semiconductor materials have drawn great attention for the application in solar cells in recent years because of their combined superior photoelectrical properties of inorganic semiconductors (with high dielectric constant and high charge carriers mobility) and organic semiconductors (with good solution processability and high absorbance). The power conversion efficiency (PCE) of the organometal halide perovskite solar cells (pero-SCs) based on CH3NH3PbI3 has been increased dramatically in a few years from 3.8% to a certified 22.1%, primarily owing to the development of new interfacial materials, careful optimization of morphology, and perovskite crystallization processes of the active layers and the device architecture. Among the optimization strategies, interface engineering plays a vital role in improving photovoltaic performance of the pero-SCs. Organometal halide perovskite material CH3NH3PbI3 was first used in solar cells in 2009 as a sensitizer in dye-sensitized solar cells with a PCE of 3.81%, and then the PCE was improved to 6.54% in 2011. However, the stability of the solar cells with a liquid electrolyte is very poor due to the easy decomposition of the perovskite in the liquid electrolyte. In 2012, spiro-MeOTAD was used as a solid hole transporting layer on the perovskite layer instead of liquid electrolyte, and all solid state pero-SCs were fabricated. The solid state pero-SCs based on mesoporous TiO2 electrode showed higher PCE of 9.7% with much improved stability. Later, the planar structured pero-SCs were developed with the dense planar electrode as a cathode. Now the planar structured pero-SCs can be classified into planar n-i-p pero-SCs with a cathode buffer layer (CBL) on a transparent electrode and p-i-n pero-SCs with an anode buffer layer on a transparent electrode. In this review article, we summarized the latest development of CBLs for highly efficient and stable planar p-i-n pero-SCs. The CBL materials can be divided into inorganic metal oxides, metals or metal salts, and n-type organic semiconductor materials according to the types of materials. And the types of the CBLs can be classified into single CBL, double CBLs, and hybrid CBL according to the CBL composition. The effects of the CBLs on the photovoltaic performance and device stability of the pero-SCs were reviewed systematically. Finally, we summarized the effects of CBL on the improvements of device efficiency and stability as well as the requirements for an ideal CBL. We hope that the properties and requirements of the ideal CBLs we summarized in this article will provide guidance for the future molecular design of cathode interfacial materials.
[1] Zhou H, Zhang Y, Mai C K, et al. Polymer homo-tandem solar cells with best efficiency of 11.3%[J]. Advanced Materials, 2015, 27(10): 1767-1773.
[2] Liu Y, Chen C C, Hong Z, et al. Solution-processed small-molecule solar cells: Breaking the 10% power conversion efficiency[J]. Scientific Reports, 2013, 3: 3356.
[3] Zhao W C, Qian D Q, Zhang S Q, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Advanced Materials, 2016, DIO: 10.1002/adma.201600281.
[4] Xue Q F, Sun C, Hu Z C, et al. Recent advances in perovskite solar cells: Morphology control and interfacial engineering[J]. Acta Chimica Sinica, 2015, 73(3): 179-192.
[6] Yu H, Liu X D, Xia Y J, et al. Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4(1): 321-326.
[7] Zhou Y Y, Yang M J, Wu W W, et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells[J]. Journal of Materials Chemistry A, 2015, 3(15): 8178-8184.
[8] Zhou Z M, Wang Z W, Zhou Y Y, et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells[J]. Angewandte Chemie-International Edition, 2015, 54(33): 9705-9709.
[10] Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9): 897-903.
[14] Shi J J, Xu X, Li D M, et al. Interfaces in perovskite solar cells[J]. Small, 2015, 11(21): 2472-2486.
[15] Zhou H P, Chen Q, Li G, et al. Photovoltaics. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542-546.
[16] Seo J, Park S, Kim Y C, et al. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(8): 2642-2646.
[17] Chueh C C, Li C Z, Jen A K Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells[J]. Energy & Environmental Science, 2015, 8(4): 1160-1189.
[18] National renewable enegry laboratory[EB/OL].http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[21] Liu F, Zhu J, Wei J F, et al. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells[J]. Applied Physics Letters, 2014, 104(25): 253508.
[22] Sha W E I, Ren X G, Chen L J, et al. The efficiency limit of CH3NH3PbI3 perovskite solar cells[J]. Applied Physics Letters, 2015, 106(22): 221104.
[23] Giorgi G, Fujisawa J, Segawa H, et al. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis[J]. The Journal of Physical Chemistry Letters, 2013, 4(24): 4213-4216.
[24] Xing G C, Mathews N, Sun S Y, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347.
[29] Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591.
[32] Im J H, Jang I H, Pellet N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nature Nanotechnology, 2014, 9(11): 927-932.
[36] Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7(6): 486-491.
[38] Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. Journal of the American Chemical Society, 2012, 134(42): 17396-17399.
[40] Aharon S, Gamliel S, El Cohen B, et al. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells[J]. Physical Chemistry Chemical Physics, 2014, 16(22): 10512-10518.
[41] Mei A Y, Li X, Liu L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295-298.
[42] Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.
[43] Xiao Z G, Yuan Y B, Shao Y C, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices[J]. Nature Materials, 2015, 14(2): 193-198.
[44] De Bastiani M, Dell'Erba G, Gandini M, et al. Ion migration and the role of preconditioning cycles in the stabilization of the J-V characteristics of inverted hybrid perovskite solar cells[J]. Advanced Energy Materials, 2016, 6(2): 1501453.
[46] Shao Y C, Xiao Z G, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nature Communications, 2014, 5: 5784.
[47] Wang Q, Shao Y C, Dong Q F, et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process[J]. Energy & Environmental Science, 2014, 7(7): 2359-2365.
[49] Wei J, Zhao Y C, Li H, et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2014, 5(21): 3937-3945.
[50] Bi C, Wang Q, Shao Y C, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nature Communications, 2015, 6: 7747.
[51] Wu C G, Chiang C H, Tseng Z L, et al. High efficiency stable inverted perovskite solar cells without current hysteresis[J]. Energy & Environmental Science, 2015, 8(9): 2725-2733.
[52] Wang K C, Jeng J Y, Shen P S, et al. P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells[J]. Scientific Reports, 2014, 4: 4756.
[53] Zhu Z L, Bai Y, Zhang T, et al. High-performance hole-extraction layer of sol-gel-processed nio nanocrystals for inverted planar perovskite solar cells[J]. Angewandte Chemie-International Edition, 2014, 53(46): 12571-12575.
[54] Chen W, Wu Y Z, Liu J, et al. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells[J]. Energy & Environmental Science, 2015, 8(2): 629-640.
[55] Niu G D, Guo X D, Wang L D. Review of recent progress in chemical stability of perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17): 8970-8980.
[56] Jeng J Y, Chiang Y F, Lee M H, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2013, 25(27): 3727-3732.
[57] Liang P W, Chueh C C, Williams S T, et al. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells[J]. Advanced Energy Materials, 2015, 5(10): 1402321.
[58] Bao Q Y, Liu X J, Braun S, et al. Oxygen- and water-based degradation in [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) films[J]. Advanced Energy Materials, 2014, 4(6): 1301272.
[60] Bai S, Wu Z W, Wu X J, et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering[J]. Nano Research, 2014, 7(12): 1749-1758.
[62] You J B, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nature Nanotechnology, 2016, 11(1): 75-81.
[64] Yang G, Tao H, Qin P L, et al. Recent progress in electron transport layers for efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4(11): 3970-3990.
[65] Chiang C H, Tseng Z L, Wu C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process[J]. Journal of Materials Chemistry A, 2014, 2(38): 15897-15903.
[66] Chen Y H, Chen T, Dai L M. Layer-by-layer growth of CH3NH3PbI3-xClx for highly efficient planar heterojunction perovskite solar cells[J]. Advanced Materials, 2015, 27(6): 1053-1059.
[67] Liu X D, Yu H, Yan L, et al. Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells[J]. Acs Applied Materials & Interfaces, 2015, 7(11): 6230-6237.
[68] Liu X D, Jiao W X, Lei M, et al. Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17): 9278-9284.
[70] Xue Q F, Hu Z C, Liu J, et al. Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer[J]. Journal of Materials Chemistry A, 2014, 2(46): 19598-19603.
[71] Min J, Zhang Z G, Hou Y, et al. Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance[J]. Chemistry of Materials, 2015, 27(1): 227-234.
[72] Zhang Z G, Qi B, Jin Z, et al. Perylene diimides: A thickness-insensitive cathode interlayer for high performance polymer solar cells[J]. Energy & Environmental Science, 2014, 7(6): 1966-1973.
[73] Qian M, Li M, Shi X B, et al. Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification[J]. Journal of Materials Chemistry A, 2015, 3(25): 13533-13539.
[74] Li C, Wang F Z, Xu J, et al. Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination[J]. Nanoscale, 2015, 7(21): 9771-9778.
[75] Chen C C, Bae S H, Chang W H, et al. Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process[J]. Materials Horizons, 2015, 2(2): 203-211.
[76] Chang C Y, Huang W K, Wu J L, et al. Room-temperature solution-processed n-doped zirconium oxide cathode buffer layer for efficient and stable organic and hybrid perovskite solar cells[J]. Chemistry of Materials, 2016, 28(1): 242-251.
[77] Chang C Y, Chang Y C, Huang W K, et al. Enhanced performance and stability of semitransparent perovskite solar cells using solution-processed thiol-functionalized cationic surfactant as cathode buffer layer[J]. Chemistry of Materials, 2015, 27(20): 7119-7127.
[78] Jiang L L, Cong S, Lou Y H, et al. Interface engineering toward enhanced efficiency of planar perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4(1): 217-222.
[80] Liu X D, Lei M, Zhou Y, et al. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers[J]. Applied Physics Letters, 2015, 107(6): 063901.
[81] Sun K, Chang J J, Isikgor F H, et al. Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection[J]. Nanoscale, 2015, 7(3): 896-900.
/
〈 |
|
〉 |