欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Sn掺杂对氧空位型α-Fe2O3纳米颗粒光解水性能的影响

  • 王祖华 ,
  • 钮东方 ,
  • 李辉成 ,
  • 杜荣斌 ,
  • 徐衡 ,
  • 张新胜
展开
  • 1.华东理工大学化学工程联合国家重点实验室 上海 200237; 2.石油化工新材料协同创新中心 安徽 安庆 246011

收稿日期: 2016-04-12

  修回日期: 2016-05-06

  网络出版日期: 2016-05-18

基金资助

国家自然科学基金项目(21303053)和化学工程联合国家重点实验室开放基金(SKLChE-14C02)资助

Sn-Doped α-Fe2O3 Photocatalyst containing Oxygen Vacancy for Water-splitting

  • Wang Zu-hua ,
  • Niu Dong-fang ,
  • Li Hui-cheng ,
  • Du Rong-bin ,
  • XU Heng ,
  • Zhang Xin-sheng
Expand
  • 1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, 2. Collaborative Innovation Center for Petrochemical New Materials, Anqing 246011, Anhui

Received date: 2016-04-12

  Revised date: 2016-05-06

  Online published: 2016-05-18

摘要

在退火前未抽真空条件下,采用滴涂法在常压氮气氛围中退火制备了含氧空位的α-Fe2O3纳米颗粒. 通过在空气和氮气氛围中退火和向前驱体溶液直接加入SnCl4制备α-Fe2O3的方法研究了Sn掺杂对氧空位型α-Fe2O3纳米颗粒光催化性能的影响. 结果表明,氮气氛围中退火Sn掺杂得到的α-Fe2O3在1.23V vs. RHE时的电流密度分别是氮气氛围中退火未掺杂α-Fe2O3的35倍和空气氛围中退火Sn掺杂α-Fe2O3的15倍,氮气氛围中退火和掺杂被证明是获得高催化性能必不可少的条件. Mott-Schottky曲线和交流阻抗谱表明,掺杂和氧空位能增大催化剂的载流子浓度的电导率. 在牺牲剂溶液中测试发现,Sn掺杂导致材料的表面反应速率提高是催化剂活性的重要影响因素.

本文引用格式

王祖华 , 钮东方 , 李辉成 , 杜荣斌 , 徐衡 , 张新胜 . Sn掺杂对氧空位型α-Fe2O3纳米颗粒光解水性能的影响[J]. 电化学, 2017 , 23(1) : 21 -27 . DOI: 10.13208/j.electrochem.160412

Abstract

The α-Fe2O3 nanoparticles containing oxygen vacancies were synthesized in atmospheric N2 by dip-dropping method without a high vacuum employed before annealing. The influences of annealing atmosphere and Sn-doping on the photocatalytic performance of α-Fe2O3 nanoparticles were studied by annealing the photocatalyst in N2 or air and adding SnCl4 to the precursor directly. The results showed that the current density of Sn-doping α-Fe2O3 annealed in N2 at 550 °C and 1.23 V (vs. RHE) was 35 times greater than that of pristine α-Fe2O3 annealed in N2 at 550 °C and 15 times greater than that of Sn-doping α-Fe2O3 annealed in air at 550 °C, which indicated that both Sn-doping and annealing in N2 were indispensible to obtain a good performance for α-Fe2O3 nanoparticles. Mott-Schottky curves and electrochemical impedance spectroscopic data proved that both Sn-doping and oxygen vacancy could lead to the increase of the donors concentration and conductivity, which resulted in the enhanced performance of α-Fe2O3 nanoparticles. The photocatalytic performance tested in the electrolyte containing sacrifice solvent confirmed that the Sn-doping could facilitate the surface reaction, which was another key factor contributed to the enhanced performance of α-Fe2O3 nanoparticles.

参考文献

[1]  Su J, Guo L, Bao N, et al. Nanostructured wo3/bivo4 heterojunction films for efficient photoelectrochemical water splitting[J]. Nano Letters, 2011, 11(5): 1928-1933

[2]  Hong S J, Lee S, Jang J S, et al. Heterojunction bivo4/wo3 electrodes for enhanced photoactivity of water oxidation[J]. Energy & Environmental Science, 2011, 4(5): 1781-1787

[3]  Yang J M杨加明, Han L J韩玲军, Zhong L P钟丽萍, et al. Preparation and photocatalytic Properties of ZnO Nanorod Arrays on Ti substrates [J]. Journal of electrochemistry电化学, 2014, 03): 288-292

[4]  Wheeler D A, Wang G, Ling Y, et al. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties[J]. Energy & Environmental Science, 2012, 5(5): 6682-6702

[5]  Wang G, Ling Y, Li Y Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications[J]. Nanoscale, 2012, 4(21): 6682-6691

[6]  Sivula K, Le?Formal F, Grätzel M Solar water splitting: Progress using hematite (α-fe2o3) photoelectrodes[J]. ChemSusChem, 2011, 4(4): 432-449

[7]  Liu J, Liang C, Zhang H, et al. General strategy for doping impurities (ge, si, mn, sn, ti) in hematite nanocrystals[J]. The Journal of Physical Chemistry C, 2012, 116(8): 4986-4992

[8]  Ling Y, Wang G, Wheeler D A, et al. Sn-doped hematite nanostructures for photoelectrochemical water splitting[J]. Nano Letters, 2011, 11(5): 2119-2125

[9]  Gurudayal, Chiam S Y, Kumar M H, et al. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5852-5859

[10] Pu A, Deng J, Li M, et al. Coupling ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency[J]. Journal of Materials Chemistry A, 2014, 2(8): 2491-2497

[11] Ling Y, Wang G, Reddy J, et al. The influence of oxygen content on the thermal activation of hematite nanowires[J]. Angewandte Chemie International Edition, 2012, 51(17): 4074-4079

[12] Yang T-Y, Kang H-Y, Sim U, et al. A new hematite photoanode doping strategy for solar water splitting: Oxygen vacancy generation[J]. Physical Chemistry Chemical Physics, 2013, 15(6): 2117-2124

[13] Ling Y, Wang G, Reddy J, et al. The influence of oxygen content on the thermal activation of hematite nanowires[J]. Angewandte Chemie International Edition, 2012, 51(17): 4074-4079

[14] Morrish R, Rahman M, MacElroy J M D, et al. Activation of hematite nanorod arrays for photoelectrochemical water splitting[J]. ChemSusChem, 2011, 4(4): 474-479

[15] Brillet J, Grätzel M, Sivula K Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting[J]. Nano Letters, 2010, 10(10): 4155-4160

文章导航

/