欢迎访问《电化学(中英文)》期刊官方网站,今天是
光电化学及新型太阳能电池近期研究专辑(厦门大学林昌健教授&中国科学院化学研究所李永舫院士主编)

光电化学分解水电池的电极性能提高方法及光阴极研究进展

  • 朱凯健 ,
  • 罗文俊 ,
  • 关中杰 ,
  • 温鑫 ,
  • 邹志刚 ,
  • 黄维
展开
  • 1. 江苏省柔性电子重点实验室,先进材料研究院,江苏先进生物与化学制造协同创新中心,南京工业大学,南京211816 2. 固体微结构国家重点实验室,物理学院,环境材料与再生能源研究中心,南京大学,南京 210093 3. 有机电子与信息显示国家重点实验室培育基地,信息材料与纳米技术研究院,江苏先进生物与化学制造协同创新中心,南京邮电大学,南京210023

收稿日期: 2016-03-18

  修回日期: 2016-04-28

  网络出版日期: 2016-05-05

基金资助

国家重点基础研究发展计划(973项目,2015CB932200与2014CB239303)、江苏省高校自然科学研究面上项目(15KJB150010) 、有机电子与信息显示国家重点实验室培育基地开放课题、南京工业大学校内课题的资助.

Photoelectrochemical Water Splitting cells: Methods for Improving Performance of Electrodes and Recent Progress on Photocathodes

  • ZHU Kai-jian ,
  • LUO Wen-jun ,
  • GUAN Zhong-jie ,
  • WEN Xin ,
  • ZOU Zhi-gang ,
  • HUANG Wei
Expand
  • 1. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China. 2. Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China 3. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China

Received date: 2016-03-18

  Revised date: 2016-04-28

  Online published: 2016-05-05

摘要

光电化学水分解电池能够将太阳能直接转化为氢能,是一种理想的太阳能利用方式. p-n叠层电池具有理论转换效率高、成本低廉、材料选择灵活等优势,被认为是最有潜力的一类光电化学水分解电池. 然而,目前这类叠层电池的太阳能转化效率还不高,主要原因是单个电极的效率太低. 本文介绍了几种提高光电极分解水性能的方法——减小光生载流子的体相复合、表面复合以及抑制背反应等,同时综述了国内外关于几种p型半导体光阴极的研究进展,如Si、InP、CuIn1-x GaxS(Se)2、Cu2ZnSnS4等. 通过总结,作者提出一种p-Cu2ZnSnS4(CuIn1-xGaxS(Se)2)/n-Ta3N5(Fe2O3) 组装方式,有望获得高效低成本叠层光电化学水分解电池.

本文引用格式

朱凯健 , 罗文俊 , 关中杰 , 温鑫 , 邹志刚 , 黄维 . 光电化学分解水电池的电极性能提高方法及光阴极研究进展[J]. 电化学, 2016 , 22(4) : 368 -381 . DOI: 10.13208/j.electrochem.160147

Abstract

Photoelectrochemical water splitting can convert solar energy into hydrogen which is an ideal way to utilize and store solar energy. A p-n tandem cell is considered as the most promising solar water splitting cell due to its high theory conversion efficiency, low cost and photoelectrode material flexibility. However, solar conversion efficiency of a tandem cell is still low in the experiment because of poor performance in a single photoelectrode. In this review, we have introduced some effective approaches to improve the performances of photoelectrodes by reducing recombination of photogenerated carriers in the bulk or on the surface, and suppressing back reaction. Moreover, we have also summarized recent progress of some p-type semiconductor photocathodes, such as Si, InP, CuIn1-x GaxS(Se)2 and Cu2ZnSnS4. Accordingly, we constructed a promising p-Cu2ZnSnS4(CuIn1-xGaxS(Se)2)/n-Ta3N5(Fe2O3)photoelectrode and obtained an efficient photoelectrochemical tandem cell with low cost.

参考文献

[1]   Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells [J]. Chemical Reviews, 2010, 110(11): 6446-6473.

[2]   Becquerel E. Studies of the effect of actinic radiation of sunlight by means of electric currents [J]. Comptes Rendus de l'Academie'Académie des Sciences, 1839, 9:145-159.

[3]  Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.

[4]   Hu S, Xiang C X, Haussener S, et al. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems [J]. Energy & Environmental Science, 2013, 6(10): 2984-2993.

[5] Mor G K, Varghese O K, Wilke R H T, et al. p-Type Cu− Ti− O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation[J]. Nano Letters, 2008, 8(7): 1906-1911.

[6] Bornoz P, Abdi F F, Tilley S D, et al. A bismuth vanadate–cuprous oxide tandem cell for overall solar water splitting[J]. The Journal of Physical Chemistry C, 2014, 118(30): 16959-16966.

[7] Ding C, Qin W, Wang N, et al. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode[J]. Physical Chemistry Chemical Physics, 2014, 16(29): 15608-15614.

[8] Jang J W, Du C, Ye Y, et al. Enabling unassisted solar water splitting by iron oxide and silicon[J]. Nature communications, 2015, 6.

[9] Kim J H, Kaneko H, Minegishi T, et al. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight[J]. ChemSusChem, 2016, 9(1): 61-66.

 [10]     Zhao Z, Luo W, Li Z, et al. Density functional theory study of doping effects in monoclinic clinobisvanite BiVO4 [J]. Physics Letters A, 2010, 374(48): 4919-4927.

[11] Luo W, Yang Z, Li Z, et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode [J]. Energy & Environmental Science, 2011, 4(10): 4046-4051.

[12] Zhao X, Luo W, Feng J, et al. Quantitative Analysis and Visualized Evidence for High Charge Separation Efficiency in a Solid-Liquid Bulk Heterojunction [J]. Advanced Energy Materials, 2014, 4(9): 1301785.

[13] Le Formal F, Tétreault N, Cornuz M, et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers [J]. Chemical Science, 2011, 2(4): 737-743.

[14] Li M, Luo W, Liu B, et al. Remarkable enhancement in photocurrent of In0.20Ga0.80N photoanode by using an electrochemical surface treatment [J]. Applied Physics Letters, 2011, 99(11): 112108.

[15] Li M, Luo W, Cao D, et al. A co-catalyst-loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer [J]. Angewandte Chemie-International Edition, 2013, 52(42): 11016-11020.

[16] Luo W, Li Z, Yu T, et al. Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO4 [J]. Journal of Physical Chemistry C, 2012, 116(8): 5076-5081.

[17] Zhang M, Luo W, Zhang N, et al. A facile strategy to passivate surface states on the undoped hematite photoanode for water splitting [J]. Electrochemistry Communications, 2012, 23:41-43.

[18] Higashi M, Domen K, Abe R. Fabrication of efficient TaON and Ta 3 N 5 photoanodes for water splitting under visible light irradiation[J]. Energy & Environmental Science, 2011, 4(10): 4138-4147.

[19] Li Y, Zhang L, Torres-Pardo A, et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency[J]. Nature communications, 2013, 4.

[20] Liao M, Feng J, Luo W, et al. Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode[J]. Advanced Functional Materials, 2012, 22(14): 3066-3074.

[21] Chen S, Shen S, Liu G, et al. Interface Engineering of a CoOx/Ta3N5 Photocatalyst for Unprecedented Water Oxidation Performance under VisibleLightIrradiation[J]. Angewandte Chemie International Edition, 2015, 54(10): 3047-3051.

[22] Liu G, Shi J, Zhang F, et al. A Tantalum Nitride Photoanode Modified with a HoleStorage Layer for Highly Stable Solar Water Splitting[J]. Angewandte Chemie International Edition, 2014, 53(28): 7295-7299.

[23] Liu G, Fu P, Zhou L, et al. Efficient Hole Extraction from a HoleStorageLayerStabilized Tantalum Nitride Photoanode for Solar Water Splitting[J]. Chemistry–A European Journal, 2015, 21(27): 9624-9628.

[24] Liu G, Ye S, Yan P, et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting[J]. Energy & Environmental Science, 2016.

[25] Cao D, Luo W, Feng J, et al. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction [J]. Energy & Environmental Science, 2014, 7(2): 752-759.

[26] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature materials, 2009, 8(1): 76-80.

[27] Zhang Y, Mori T, Ye J, et al. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation[J]. Journal of the American Chemical Society, 2010, 132(18): 6294-6295.

[28] Zhang Y, Mori T, Niu L, et al. Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion[J]. Energy & Environmental Science, 2011, 4(11): 4517-4521.

[29] Wang J, Zhang C, Shen Y, et al. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity[J]. Journal of Materials Chemistry A, 2015, 3(9): 5126-5131.

[30] Zhang J, Zhang M, Lin L, et al. Sol Processing of Conjugated Carbon Nitride Powders for ThinFilm Fabrication[J]. Angewandte Chemie International Edition, 2015, 54(21): 6297-6301.

[31] Chen Z, Jaramillo T F, Deutsch T G, et al. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols [J]. Journal of Materials Research, 2010, 25(01): 3-16.

[32] Bookbinder D C, Lewis N S, Bradley M G, et al. Photoelectrochemical reduction of N, N'-dimethyl-4, 4'-bipyridinium in aqueous media at p-type silicon: sustained photogeneration of a species capable of evolving hydrogen [J]. Journal of the American Chemical Society, 1979, 101(26): 7721-7723.

[33] Bookbinder D C, Bruce J A, Dominey R N, et al. Synthesis and characterization of a photosensitive interface for hydrogen generation: Chemically modified p-type semiconducting silicon photocathodes [J]. Proceedings of the National Academy of Sciences, 1980, 77(11): 6280-6284.

[34] Dominey R N, Lewis N S, Bruce J A, et al. Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes [J]. Journal of the American Chemical Society, 1982, 104(2): 467-482.

[35] Basu M, Zhang Z W, Chen C J, et al. Heterostructure of Si and CoSe2: A promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution [J]. Angewandte Chemie-International Edition, 2015, 54(21): 6211-6216.

[36] Hughes R C, Ginley D S, Hays A K. Ion-selective photoelectrochemistry and stabilization by siloxane-coated P-Si electrodes [J]. Applied Physics Letters, 1982, 40(9): 853-856.

[37] Scafe E, Maletta G, Tomaciello R, et al. Indium-doped CdS Film on p-Type silicon - an efficient heterojunction solar-Cell [J]. Solar Cells, 1983, 10(1): 17-32.

[38] Seger B, Laursen A B, Vesborg P C K, et al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n plus p-Silicon photocathode [J]. Angewandte Chemie-International Edition, 2012, 51(36): 9128-9131.

[39] Esposito D V, Levin I, Moffat T P, et al. H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover [J]. Nature Materials, 2013, 12(6): 562-568.

[40] Feng J, Gong M, Kenney M J, et al. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes [J]. Nano Research, 2015, 8(5): 1577-1583.

[41] Ji L, McDaniel M D, Wang S J, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst [J]. Nature Nanotechnology, 2015, 10(1): 84-90.

[42] Hou Y D, Abrams B L, Vesborg P C K, et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution [J]. Nature Materials, 2011, 10(6): 434-438.

[43] Oh J H, Deutsch T G, Yuan H C, et al. Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting [J]. Energy & Environmental Science, 2011, 4(5): 1690-1694.

[44] Oh I, Kye J, Hwang S. Fabrication of metal-semiconductor interface in porous silicon and its photoelectrochemical hydrogen production [J]. Bulletin of the Korean Chemical Society, 2011, 32(12): 4393.

[45] Chandrasekaran S, Macdonald T J, Mange Y J, et al. A quantum dot sensitized catalytic porous silicon photocathode [J]. Journal of Materials Chemistry A, 2014, 2(25): 9478-9481.

[46] Chandrasekaran S, Macdonald T J, Gerson A R, et al. Boron-doped silicon diatom frustules as a photocathode for water splitting [J]. Acs Applied Materials & Interfaces, 2015, 7(31): 17381-17387.

[47] Chandrasekaran S, McInnes S J, Macdonald T J, et al. Porous silicon nanoparticles as a nanophotocathode for photoelectrochemical water splitting [J]. Rsc Advances, 2015, 5(104): 85978-85982.

[48] Heller A, Miller B, Lewerenz H, et al. An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VCl3-VCl2-HCl/C [J]. Journal of the American Chemical Society, 1980, 102(21): 6555-6556.

[49] Heller A, Miller B, Thiel F. 11.5% solar conversion efficiency in the photocathodically protected pInP/V3+V2+HCI/C semiconductor liquid junction cell [J]. Applied Physics Letters, 1981, 38(4): 282-284.

[50] Heller A, Vadimsky R G. Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP (Ru)]/HCl-KCl/Pt (Rh) cell [J]. Physical Review Letters, 1981, 46(17): 1153.

[51] Munoz A G, Heine C, Lublow M, et al. Photoelectrochemical conditioning of MOVPE p-InP films for light-induced hydrogen evolution: chemical, electronic and optical properties [J]. Ecs Journal of Solid State Science and Technology, 2013, 2(4): Q51-Q58.

[52] Woo R L, Xiao R, Kobayashi Y, et al. Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon (111) [J]. Nano Lett, 2008, 8(12): 4664-4669.

[53] Gao L, Cui Y C, Wang J, et al. Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts [J]. Nano Lett, 2014, 14(7): 3715-3719.

[54] Li Q, Tang C W, Lau K M, et al. Growth of low defect-density InP on exact Si (001) substrates by metalorganic chemical vapor deposition with position-controlled seed arrays[C]//Indium Phosphide and Related Materials (IPRM), 26th International Conference on. IEEE, 2014: 1-2.

[55] Kapadia R, Yu Z, Wang H H H, et al. A direct thin-film path towards low-cost large-area III-V photovoltaics[J]. Scientific reports, 2013, 3.

[56] Kapadia R, Yu Z, Hettick M, et al. Deterministic nucleation of InP on metal foils with the thin-film vapor–liquid–solid growth mode[J]. Chemistry of Materials, 2014, 26(3): 1340-1344.

[57] Zheng M, Wang H P, SutterFella C M, et al. ThinFilm Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates[J]. Advanced Energy Materials, 2015, 5(22).

[58] Lin Y, Kapadia R, Yang J, et al. Role of TiO2 surface passivation on improving the performance of p-InP photocathodes [J]. The Journal of Physical Chemistry C, 2015, 119(5): 2308-2313.

[59] Hettick M, Zheng M, Lin Y, et al. Non-epitaxial thin-film InP for scalable and efficient photocathodes [J]. J Phys Chem Lett, 2015,

[60] Yu Z G, Pryor C E, Lau W H, et al. Core-shell nanorods for efficient photoelectrochemical hydrogen production [J]. Journal of Physical Chemistry B, 2005, 109(48): 22913-22919.

 [61] Lee M H, Takei K, Zhang J J, et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production [J]. Angewandte Chemie-International Edition, 2012, 51(43): 10760-10764.

[62] Huang C-H. Effects of Ga content on Cu(In,Ga)Se2 solar cells studied by numerical modeling [J]. Journal of Physics and Chemistry of Solids, 2008, 69(2): 330-334.

[63] Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20% [J]. Progress in Photovoltaics, 2011, 19(7): 894-897.

[64] Contreras M A, Egaas B, Ramanathan K, et al. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thinfilm solar cells [J]. Progress in Photovoltaics: Research and applications, 1999, 7(4): 311-316.

[65] Bhattacharya R, Hiltner J, Batchelor W, et al. 15.4% CuIn1−xGaxSe2-based photovoltaic cells from solution-based precursor films [J]. Thin Solid Films, 2000, 361:396-399.

[66] Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells [J]. Progress in Photovoltaics, 2003, 11(4): 225-230.

[67] Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor [J]. Progress in Photovoltaics, 2008, 16(3): 235-239.

[68] Yokoyama D, Minegishi T, Maeda K, et al. Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film [J]. Electrochemistry Communications, 2010, 12(6): 851-853.

[69] Guan Z J, Luo W J, Feng J Y, et al. Selective etching of metastable phase induced an efficient CuIn0.7Ga0.3S2 nano-photocathode for solar water splitting [J]. Journal of Materials Chemistry A, 2015, 3(15): 7840-7848.

[70] Jacobsson T J, Platzer-Björkman C, Edoff M, et al. CuInxGa1−xSe2 as an efficient photocathode for solar hydrogen generation [J]. International Journal of Hydrogen Energy, 2013, 38(35): 15027-15035.

[71] Kumagai H, Minegishi T, Sato N, et al. Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes [J]. Journal of Materials Chemistry A, 2015, 3(16): 8300-8307.

[72] Mali M G, Yoon H, Joshi B N, et al. Enhanced photoelectrochemical solar water splitting using a platinum-decorated CIGS/CdS/ZnO Photocathode [J]. Acs Applied Materials & Interfaces, 2015, 7(38): 21619-21625.

[73] Zhang Y, Ouyang S, Yu Q, et al. Modulation of sulfur partial pressure in sulfurization to significantly improve the photoelectrochemical performance over the Cu2ZnSnS4 photocathode [J]. Chemical Communications, 2015, 51(74): 14057-14059.

[74] Choi Y, Baek M, Zhang Z, et al. A two-storey structured photoanode of a 3D Cu2ZnSnS4/CdS/ZnO@steel composite nanostructure for efficient photoelectrochemical hydrogen generation [J]. Nanoscale, 2015, 7(37): 15291-15299.

[75] Lin J, Guo J, Liu C, et al. Three-dimensional Cu2ZnSnS4 films with modified surface for thin-film lithium-ion batteries [J]. Acs Applied Materials & Interfaces, 2015, 7(31): 17311-17317.

[76] Yang G, Li Y F, Yao B, et al. Alternative spectral photoresponse in a p-Cu2ZnSnS4/n-GaN heterojunction photodiode by modulating applied voltage [J]. Acs Applied Materials & Interfaces, 2015, 7(30): 16653-16658.

[77] Wang Z, Demopoulos G P. Growth of Cu2ZnSnS4 nanocrystallites on TiO2 nanorod arrays as novel extremely thin absorber solar cell structure via the successive-ion-layer-adsorption-reaction method [J]. Acs Applied Materials & Interfaces, 2015, 7(41): 22888-22897.

[78] Tao J, Zhang K, Zhang C, et al. A sputtered CdS buffer layer for co-electrodeposited Cu2ZnSnS4 solar cells with 6.6% efficiency [J]. Chemical Communications, 2015, 51(51): 10337-10340.

[79] Redinger A, Berg D M, Dale P J, et al. The consequences of kesterite equilibria for efficient solar cells [J]. Journal of the American Chemical Society, 2011, 133(10): 3320-3323.

[80] Hsu W-C, Zhou H, Luo S, et al. Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6% Cu2ZnSn (S,Se)4 device [J]. Acs Nano, 2014, 8(9): 9164-9172.

[81] Todorov T K, Reuter K B, Mitzi D B. Highefficiency solar cell with earthabundant liquidprocessed absorber [J]. Advanced Materials, 2010, 22(20): E156-E159.

[82] Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thinfilm solar cells with 12.6% efficiency [J]. Advanced Energy Materials, 2014, 4(7).

[83] Ito K, Nakazawa T. Electrical and optical properties of stannite-type quaternary semiconductor thin films [J]. Japanese Journal of Applied Physics, 1988, 27(11R): 2094.

[84] Nakayama N, Ito K. Sprayed films of stannite Cu2ZnSnS4 [J]. Applied Surface Science, 1996, 92(171-175.

[85] Katagiri H, Sasaguchi N, Hando S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors [J]. Solar Energy Materials and Solar Cells, 1997, 49(1): 407-414.

[86] Scragg J J, Dale P J, Peter L M, et al. New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material [J]. Physica Status Solidi-B-Basic Solid State Physics, 2008, 245(9): 1772-1778.

[87] Guo Q, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells [J]. Journal of the American Chemical Society, 2009, 131(33): 11672-11673.

[88] Mitzi D B, Todorov T K, Gunawan O, et al. Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices [C].Proceedings of the Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, IEEE, 2010: 000640-000645.

[89] Huang S, Luo W, Zou Z. Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method [J]. Journal of Physics D-Applied Physics, 2013, 46(23).

[90] Wen X, Luo W, Zou Z. Photocurrent improvement in nanocrystalline Cu2ZnSnS4 photocathodes by introducing porous structures [J]. Journal of Materials Chemistry A, 2013, 1(48): 15479-15485.

[91] Nagoya A, Asahi R, Kresse G. First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications [J]. Journal of Physics: Condensed Matter, 2011, 23(40): 404203.

[92] Guan Z, Luo W, Zou Z. Formation mechanism of ZnS impurities and their effect on photoelectrochemical properties on a Cu2ZnSnS4 photocathode [J]. Crystengcomm, 2014, 16(14): 2929-2936.

[93] Guan Z, Luo W, Xu Y, et al. Aging precursor solution in high humidity remarkably promoted grain growth in Cu2ZnSnS4 films [J]. Acs Applied Materials & Interfaces, 2016.

[94] Yokoyama D, Minegishi T, Jimbo K, et al. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light [J]. Applied physics express, 2010, 3(10): 101202.

[95] Ma G, Minegishi T, Yokoyama D, et al. Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating [J]. Chemical Physics Letters, 2011, 501(4): 619-622.

[96] Jiang F, Gunawan, Harada T, et al. Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation [J]. Journal of the American Chemical Society, 2015, 137(42): 13691-13697.

[97] Li J, Wu N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review[J]. Catalysis Science & Technology, 2015, 5(3): 1360-1384.

[98] Hu S, Xiang C, Haussener S, et al. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems [J]. Energy & Environmental Science, 2013, 6(10): 2984-2993.

[99] Choi W J, Kwak D J, Park C S, et al. Characterization of transparent conductive ITO, ITiO, and FTO Films for application in photoelectrochemical cells[J]. Journal of nanoscience and nanotechnology, 2012, 12(4): 3394-3397.

文章导航

/