[1] Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells [J]. Chemical Reviews, 2010, 110(11): 6446-6473.
[2] Becquerel E. Studies of the effect of actinic radiation of sunlight by means of electric currents [J]. Comptes Rendus de l'Academie'Académie des Sciences, 1839, 9:145-159.
[3] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
[4] Hu S, Xiang C X, Haussener S, et al. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems [J]. Energy & Environmental Science, 2013, 6(10): 2984-2993.
[5] Mor G K, Varghese O K, Wilke R H T, et al. p-Type Cu− Ti− O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation[J]. Nano Letters, 2008, 8(7): 1906-1911.
[6] Bornoz P, Abdi F F, Tilley S D, et al. A bismuth vanadate–cuprous oxide tandem cell for overall solar water splitting[J]. The Journal of Physical Chemistry C, 2014, 118(30): 16959-16966.
[7] Ding C, Qin W, Wang N, et al. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode[J]. Physical Chemistry Chemical Physics, 2014, 16(29): 15608-15614.
[8] Jang J W, Du C, Ye Y, et al. Enabling unassisted solar water splitting by iron oxide and silicon[J]. Nature communications, 2015, 6.
[9] Kim J H, Kaneko H, Minegishi T, et al. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight[J]. ChemSusChem, 2016, 9(1): 61-66.
[10] Zhao Z, Luo W, Li Z, et al. Density functional theory study of doping effects in monoclinic clinobisvanite BiVO4 [J]. Physics Letters A, 2010, 374(48): 4919-4927.
[11] Luo W, Yang Z, Li Z, et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode [J]. Energy & Environmental Science, 2011, 4(10): 4046-4051.
[12] Zhao X, Luo W, Feng J, et al. Quantitative Analysis and Visualized Evidence for High Charge Separation Efficiency in a Solid-Liquid Bulk Heterojunction [J]. Advanced Energy Materials, 2014, 4(9): 1301785.
[13] Le Formal F, Tétreault N, Cornuz M, et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers [J]. Chemical Science, 2011, 2(4): 737-743.
[14] Li M, Luo W, Liu B, et al. Remarkable enhancement in photocurrent of In0.20Ga0.80N photoanode by using an electrochemical surface treatment [J]. Applied Physics Letters, 2011, 99(11): 112108.
[15] Li M, Luo W, Cao D, et al. A co-catalyst-loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer [J]. Angewandte Chemie-International Edition, 2013, 52(42): 11016-11020.
[16] Luo W, Li Z, Yu T, et al. Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO4 [J]. Journal of Physical Chemistry C, 2012, 116(8): 5076-5081.
[17] Zhang M, Luo W, Zhang N, et al. A facile strategy to passivate surface states on the undoped hematite photoanode for water splitting [J]. Electrochemistry Communications, 2012, 23:41-43.
[18] Higashi M, Domen K, Abe R. Fabrication of efficient TaON and Ta 3 N 5 photoanodes for water splitting under visible light irradiation[J]. Energy & Environmental Science, 2011, 4(10): 4138-4147.
[19] Li Y, Zhang L, Torres-Pardo A, et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency[J]. Nature communications, 2013, 4.
[20] Liao M, Feng J, Luo W, et al. Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode[J]. Advanced Functional Materials, 2012, 22(14): 3066-3074.
[21] Chen S, Shen S, Liu G, et al. Interface Engineering of a CoOx/Ta3N5 Photocatalyst for Unprecedented Water Oxidation Performance under Visible‐Light‐Irradiation[J]. Angewandte Chemie International Edition, 2015, 54(10): 3047-3051.
[22] Liu G, Shi J, Zhang F, et al. A Tantalum Nitride Photoanode Modified with a Hole‐Storage Layer for Highly Stable Solar Water Splitting[J]. Angewandte Chemie International Edition, 2014, 53(28): 7295-7299.
[23] Liu G, Fu P, Zhou L, et al. Efficient Hole Extraction from a Hole‐Storage‐Layer‐Stabilized Tantalum Nitride Photoanode for Solar Water Splitting[J]. Chemistry–A European Journal, 2015, 21(27): 9624-9628.
[24] Liu G, Ye S, Yan P, et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting[J]. Energy & Environmental Science, 2016.
[25] Cao D, Luo W, Feng J, et al. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction [J]. Energy & Environmental Science, 2014, 7(2): 752-759.
[26] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature materials, 2009, 8(1): 76-80.
[27] Zhang Y, Mori T, Ye J, et al. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation[J]. Journal of the American Chemical Society, 2010, 132(18): 6294-6295.
[28] Zhang Y, Mori T, Niu L, et al. Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion[J]. Energy & Environmental Science, 2011, 4(11): 4517-4521.
[29] Wang J, Zhang C, Shen Y, et al. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity[J]. Journal of Materials Chemistry A, 2015, 3(9): 5126-5131.
[30] Zhang J, Zhang M, Lin L, et al. Sol Processing of Conjugated Carbon Nitride Powders for Thin‐Film Fabrication[J]. Angewandte Chemie International Edition, 2015, 54(21): 6297-6301.
[31] Chen Z, Jaramillo T F, Deutsch T G, et al. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols [J]. Journal of Materials Research, 2010, 25(01): 3-16.
[32] Bookbinder D C, Lewis N S, Bradley M G, et al. Photoelectrochemical reduction of N, N'-dimethyl-4, 4'-bipyridinium in aqueous media at p-type silicon: sustained photogeneration of a species capable of evolving hydrogen [J]. Journal of the American Chemical Society, 1979, 101(26): 7721-7723.
[33] Bookbinder D C, Bruce J A, Dominey R N, et al. Synthesis and characterization of a photosensitive interface for hydrogen generation: Chemically modified p-type semiconducting silicon photocathodes [J]. Proceedings of the National Academy of Sciences, 1980, 77(11): 6280-6284.
[34] Dominey R N, Lewis N S, Bruce J A, et al. Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes [J]. Journal of the American Chemical Society, 1982, 104(2): 467-482.
[35] Basu M, Zhang Z W, Chen C J, et al. Heterostructure of Si and CoSe2: A promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution [J]. Angewandte Chemie-International Edition, 2015, 54(21): 6211-6216.
[36] Hughes R C, Ginley D S, Hays A K. Ion-selective photoelectrochemistry and stabilization by siloxane-coated P-Si electrodes [J]. Applied Physics Letters, 1982, 40(9): 853-856.
[37] Scafe E, Maletta G, Tomaciello R, et al. Indium-doped CdS Film on p-Type silicon - an efficient heterojunction solar-Cell [J]. Solar Cells, 1983, 10(1): 17-32.
[38] Seger B, Laursen A B, Vesborg P C K, et al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n plus p-Silicon photocathode [J]. Angewandte Chemie-International Edition, 2012, 51(36): 9128-9131.
[39] Esposito D V, Levin I, Moffat T P, et al. H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover [J]. Nature Materials, 2013, 12(6): 562-568.
[40] Feng J, Gong M, Kenney M J, et al. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes [J]. Nano Research, 2015, 8(5): 1577-1583.
[41] Ji L, McDaniel M D, Wang S J, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst [J]. Nature Nanotechnology, 2015, 10(1): 84-90.
[42] Hou Y D, Abrams B L, Vesborg P C K, et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution [J]. Nature Materials, 2011, 10(6): 434-438.
[43] Oh J H, Deutsch T G, Yuan H C, et al. Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting [J]. Energy & Environmental Science, 2011, 4(5): 1690-1694.
[44] Oh I, Kye J, Hwang S. Fabrication of metal-semiconductor interface in porous silicon and its photoelectrochemical hydrogen production [J]. Bulletin of the Korean Chemical Society, 2011, 32(12): 4393.
[45] Chandrasekaran S, Macdonald T J, Mange Y J, et al. A quantum dot sensitized catalytic porous silicon photocathode [J]. Journal of Materials Chemistry A, 2014, 2(25): 9478-9481.
[46] Chandrasekaran S, Macdonald T J, Gerson A R, et al. Boron-doped silicon diatom frustules as a photocathode for water splitting [J]. Acs Applied Materials & Interfaces, 2015, 7(31): 17381-17387.
[47] Chandrasekaran S, McInnes S J, Macdonald T J, et al. Porous silicon nanoparticles as a nanophotocathode for photoelectrochemical water splitting [J]. Rsc Advances, 2015, 5(104): 85978-85982.
[48] Heller A, Miller B, Lewerenz H, et al. An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VCl3-VCl2-HCl/C [J]. Journal of the American Chemical Society, 1980, 102(21): 6555-6556.
[49] Heller A, Miller B, Thiel F. 11.5% solar conversion efficiency in the photocathodically protected p‐InP/V3+‐V2+‐HCI/C semiconductor liquid junction cell [J]. Applied Physics Letters, 1981, 38(4): 282-284.
[50] Heller A, Vadimsky R G. Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP (Ru)]/HCl-KCl/Pt (Rh) cell [J]. Physical Review Letters, 1981, 46(17): 1153.
[51] Munoz A G, Heine C, Lublow M, et al. Photoelectrochemical conditioning of MOVPE p-InP films for light-induced hydrogen evolution: chemical, electronic and optical properties [J]. Ecs Journal of Solid State Science and Technology, 2013, 2(4): Q51-Q58.
[52] Woo R L, Xiao R, Kobayashi Y, et al. Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon (111) [J]. Nano Lett, 2008, 8(12): 4664-4669.
[53] Gao L, Cui Y C, Wang J, et al. Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts [J]. Nano Lett, 2014, 14(7): 3715-3719.
[54] Li Q, Tang C W, Lau K M, et al. Growth of low defect-density InP on exact Si (001) substrates by metalorganic chemical vapor deposition with position-controlled seed arrays[C]//Indium Phosphide and Related Materials (IPRM), 26th International Conference on. IEEE, 2014: 1-2.
[55] Kapadia R, Yu Z, Wang H H H, et al. A direct thin-film path towards low-cost large-area III-V photovoltaics[J]. Scientific reports, 2013, 3.
[56] Kapadia R, Yu Z, Hettick M, et al. Deterministic nucleation of InP on metal foils with the thin-film vapor–liquid–solid growth mode[J]. Chemistry of Materials, 2014, 26(3): 1340-1344.
[57] Zheng M, Wang H P, Sutter‐Fella C M, et al. Thin‐Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates[J]. Advanced Energy Materials, 2015, 5(22).
[58] Lin Y, Kapadia R, Yang J, et al. Role of TiO2 surface passivation on improving the performance of p-InP photocathodes [J]. The Journal of Physical Chemistry C, 2015, 119(5): 2308-2313.
[59] Hettick M, Zheng M, Lin Y, et al. Non-epitaxial thin-film InP for scalable and efficient photocathodes [J]. J Phys Chem Lett, 2015,
[60] Yu Z G, Pryor C E, Lau W H, et al. Core-shell nanorods for efficient photoelectrochemical hydrogen production [J]. Journal of Physical Chemistry B, 2005, 109(48): 22913-22919.
[61] Lee M H, Takei K, Zhang J J, et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production [J]. Angewandte Chemie-International Edition, 2012, 51(43): 10760-10764.
[62] Huang C-H. Effects of Ga content on Cu(In,Ga)Se2 solar cells studied by numerical modeling [J]. Journal of Physics and Chemistry of Solids, 2008, 69(2): 330-334.
[63] Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20% [J]. Progress in Photovoltaics, 2011, 19(7): 894-897.
[64] Contreras M A, Egaas B, Ramanathan K, et al. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells [J]. Progress in Photovoltaics: Research and applications, 1999, 7(4): 311-316.
[65] Bhattacharya R, Hiltner J, Batchelor W, et al. 15.4% CuIn1−xGaxSe2-based photovoltaic cells from solution-based precursor films [J]. Thin Solid Films, 2000, 361:396-399.
[66] Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells [J]. Progress in Photovoltaics, 2003, 11(4): 225-230.
[67] Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor [J]. Progress in Photovoltaics, 2008, 16(3): 235-239.
[68] Yokoyama D, Minegishi T, Maeda K, et al. Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film [J]. Electrochemistry Communications, 2010, 12(6): 851-853.
[69] Guan Z J, Luo W J, Feng J Y, et al. Selective etching of metastable phase induced an efficient CuIn0.7Ga0.3S2 nano-photocathode for solar water splitting [J]. Journal of Materials Chemistry A, 2015, 3(15): 7840-7848.
[70] Jacobsson T J, Platzer-Björkman C, Edoff M, et al. CuInxGa1−xSe2 as an efficient photocathode for solar hydrogen generation [J]. International Journal of Hydrogen Energy, 2013, 38(35): 15027-15035.
[71] Kumagai H, Minegishi T, Sato N, et al. Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes [J]. Journal of Materials Chemistry A, 2015, 3(16): 8300-8307.
[72] Mali M G, Yoon H, Joshi B N, et al. Enhanced photoelectrochemical solar water splitting using a platinum-decorated CIGS/CdS/ZnO Photocathode [J]. Acs Applied Materials & Interfaces, 2015, 7(38): 21619-21625.
[73] Zhang Y, Ouyang S, Yu Q, et al. Modulation of sulfur partial pressure in sulfurization to significantly improve the photoelectrochemical performance over the Cu2ZnSnS4 photocathode [J]. Chemical Communications, 2015, 51(74): 14057-14059.
[74] Choi Y, Baek M, Zhang Z, et al. A two-storey structured photoanode of a 3D Cu2ZnSnS4/CdS/ZnO@steel composite nanostructure for efficient photoelectrochemical hydrogen generation [J]. Nanoscale, 2015, 7(37): 15291-15299.
[75] Lin J, Guo J, Liu C, et al. Three-dimensional Cu2ZnSnS4 films with modified surface for thin-film lithium-ion batteries [J]. Acs Applied Materials & Interfaces, 2015, 7(31): 17311-17317.
[76] Yang G, Li Y F, Yao B, et al. Alternative spectral photoresponse in a p-Cu2ZnSnS4/n-GaN heterojunction photodiode by modulating applied voltage [J]. Acs Applied Materials & Interfaces, 2015, 7(30): 16653-16658.
[77] Wang Z, Demopoulos G P. Growth of Cu2ZnSnS4 nanocrystallites on TiO2 nanorod arrays as novel extremely thin absorber solar cell structure via the successive-ion-layer-adsorption-reaction method [J]. Acs Applied Materials & Interfaces, 2015, 7(41): 22888-22897.
[78] Tao J, Zhang K, Zhang C, et al. A sputtered CdS buffer layer for co-electrodeposited Cu2ZnSnS4 solar cells with 6.6% efficiency [J]. Chemical Communications, 2015, 51(51): 10337-10340.
[79] Redinger A, Berg D M, Dale P J, et al. The consequences of kesterite equilibria for efficient solar cells [J]. Journal of the American Chemical Society, 2011, 133(10): 3320-3323.
[80] Hsu W-C, Zhou H, Luo S, et al. Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6% Cu2ZnSn (S,Se)4 device [J]. Acs Nano, 2014, 8(9): 9164-9172.
[81] Todorov T K, Reuter K B, Mitzi D B. High‐efficiency solar cell with earth‐abundant liquid‐processed absorber [J]. Advanced Materials, 2010, 22(20): E156-E159.
[82] Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency [J]. Advanced Energy Materials, 2014, 4(7).
[83] Ito K, Nakazawa T. Electrical and optical properties of stannite-type quaternary semiconductor thin films [J]. Japanese Journal of Applied Physics, 1988, 27(11R): 2094.
[84] Nakayama N, Ito K. Sprayed films of stannite Cu2ZnSnS4 [J]. Applied Surface Science, 1996, 92(171-175.
[85] Katagiri H, Sasaguchi N, Hando S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors [J]. Solar Energy Materials and Solar Cells, 1997, 49(1): 407-414.
[86] Scragg J J, Dale P J, Peter L M, et al. New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material [J]. Physica Status Solidi-B-Basic Solid State Physics, 2008, 245(9): 1772-1778.
[87] Guo Q, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells [J]. Journal of the American Chemical Society, 2009, 131(33): 11672-11673.
[88] Mitzi D B, Todorov T K, Gunawan O, et al. Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices [C].Proceedings of the Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, IEEE, 2010: 000640-000645.
[89] Huang S, Luo W, Zou Z. Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method [J]. Journal of Physics D-Applied Physics, 2013, 46(23).
[90] Wen X, Luo W, Zou Z. Photocurrent improvement in nanocrystalline Cu2ZnSnS4 photocathodes by introducing porous structures [J]. Journal of Materials Chemistry A, 2013, 1(48): 15479-15485.
[91] Nagoya A, Asahi R, Kresse G. First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications [J]. Journal of Physics: Condensed Matter, 2011, 23(40): 404203.
[92] Guan Z, Luo W, Zou Z. Formation mechanism of ZnS impurities and their effect on photoelectrochemical properties on a Cu2ZnSnS4 photocathode [J]. Crystengcomm, 2014, 16(14): 2929-2936.
[93] Guan Z, Luo W, Xu Y, et al. Aging precursor solution in high humidity remarkably promoted grain growth in Cu2ZnSnS4 films [J]. Acs Applied Materials & Interfaces, 2016.
[94] Yokoyama D, Minegishi T, Jimbo K, et al. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light [J]. Applied physics express, 2010, 3(10): 101202.
[95] Ma G, Minegishi T, Yokoyama D, et al. Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating [J]. Chemical Physics Letters, 2011, 501(4): 619-622.
[96] Jiang F, Gunawan, Harada T, et al. Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation [J]. Journal of the American Chemical Society, 2015, 137(42): 13691-13697.
[97] Li J, Wu N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review[J]. Catalysis Science & Technology, 2015, 5(3): 1360-1384.
[98] Hu S, Xiang C, Haussener S, et al. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems [J]. Energy & Environmental Science, 2013, 6(10): 2984-2993.
[99] Choi W J, Kwak D J, Park C S, et al. Characterization of transparent conductive ITO, ITiO, and FTO Films for application in photoelectrochemical cells[J]. Journal of nanoscience and nanotechnology, 2012, 12(4): 3394-3397.