欢迎访问《电化学(中英文)》期刊官方网站,今天是
光电化学及新型太阳能电池近期研究专辑(厦门大学林昌健教授&中国科学院化学研究所李永舫院士主编)

三种CuS对电极的制备及其对量子点敏化太阳能电池光电性能的影响

  • 洪晓丹 ,
  • 许子颉 ,
  • 张发荫 ,
  • 李宇鹏 ,
  • 叶美丹 ,
  • 林昌健 ,
  • 郭文熹
展开
  • 1. 生物仿生与软物质研究院,福建省柔性功能材料重点实验室,物理系,物理科学与技术学院,厦门大学,厦门361005;2. 固体表面物理化学国家重点实验室,化学系,化学化工学院,厦门大学,厦门361005;3. 纤维材料改性国家重点实验室,材料科学与工程学院,东华大学,上海201620

收稿日期: 2016-03-16

  修回日期: 2016-05-10

  网络出版日期: 2016-05-18

基金资助

国家自然科学基金(Nos.21503177),中央高校基本科研业务费(NO.20720150031)、高等学校学科创新引智计划(“111 计划”,B16029)资助

Fabrications of three copper sulfide counter electrodes and their influences on photovoltaic properties in QDSSCs

  • Xiaodan Hong ,
  • Zijie Xu ,
  • Fayin Zhang ,
  • Yupeng Li ,
  • Meidan Ye ,
  • Changjian Lin ,
  • Wenxi Guo
Expand
  • 1. Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005; 2. State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005; 3. The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China.

Received date: 2016-03-16

  Revised date: 2016-05-10

  Online published: 2016-05-18

摘要

近几年,量子点敏化太阳能电池因其具有低成本、易合成、高的光电转换效率等优点而广受关注. 半导体金属硫化物具有良好的物理和化学性质,被广泛应用于各个领域,其中,铜硫化物凭借其优异的电化学催化活性,而成为量子点敏化太阳能电池良好的对电极材料. 本文通过3种不同的方法在FTO表面生长CuS纳米阵列(依次记为CuS-1、CuS-2、CuS-3),并对样品进行晶相表征、表面形貌分析、电化学性能测试以及相应量子点敏化太阳能电池器件组装,最终发现CuS-3样品具有最优的光电性能.

本文引用格式

洪晓丹 , 许子颉 , 张发荫 , 李宇鹏 , 叶美丹 , 林昌健 , 郭文熹 . 三种CuS对电极的制备及其对量子点敏化太阳能电池光电性能的影响[J]. 电化学, 2016 , 22(4) : 404 -411 . DOI: 10.13208/j.electrochem.160146

Abstract

Quantum dot-sensitized solar cells (QDSSCs) have attracted intensive attention in scientific and industrial fields due to their high molar extinction coefficient, spectral tunability by particle size, ease of fabrication, and low cost. In the past years, semiconductor metal sulfides have attracted extensive attention because of their attractive physical and chemical properties for potential applications in many fields,such as PbS, CuS, CoS and CdS. In particular, copper sulfides have become a promising candidate for counter electrode materials in QDSSCs for their outstanding electrochemical and catalytic properties. In order to explore more stable and efficient copper sulfide counter electrode materials, in this work, we used three different methods to synthesize copper sulfide nanosheet arrays (marked as CuS-1, CuS-2, CuS-3), which were then characterized by XRD, SEM and electrochemical workstation. XRD patterns showed that all the three samples were copper sulfide (Cu:S = 1:1). And SEM images revealed that the fabrication methods of CuS significantly affected their morphologies. . The obtained CuS-1, CuS-2 and CuS-3 nanosheet arrays exhibited enhanced PCEs up to 2.92%,2.58% and 3.27%, respectively, when used as CEs in QDSSCs, implying increases of 87%,65% and 109% as compared to Pt-based QDSSCs, respectively. Through all the characterizations, we found that the CuS-3 showed the best catalytic activity in the reduction of polysulfide electrolyte among the three samples.

参考文献

1.            Zhang Q X, Zhang Y D, Huang S Q, et al. Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs) [J].Electrochemistry Communications, 2010,12(2):327-330.

2.            Jun H K, Careem M A, Arof A K. Quantum dot-sensitized solar cells—perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers [J]. Renewable and Sustainable Energy Reviews, 2013,22:148-167.

3.            Cui J B, Li Y J, Liu L, et al. Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions [J]. Nano Letters, 2015,15(10):6295-6301.

4.            Sudhagar P, Song T, Lee D H, et al. High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures [J].Journal of Physical Chemistry Letters, 2011,2(16):1984-1990.

5.            Rühle S, Shalom M, Zaban A. Quantum-Dot-Sensitized Solar Cells [J]. Chemphyschem, 2010,11(11):2290-2304.

6.            Guo W X, Chen C, Ye M D, et al. Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells [J]. Nanoscale, 2014,6(7):3656-3663.

7.            Ye M D, Chen C, Lv M Q, et al. Facile and effective synthesis of hierarchical TiO2 spheres for efficient dye-sensitized solar cells [J]. Nanoscale, 2013,5(14):6577-6583.

8.            Li L L, Zhu P N, Peng S J, et al. Controlled Growth of CuS on Electrospun Carbon Nanofibers as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells [J]. Journal of Physical Chemistry C, 2014,118(30):16526-16535.

9.            Tian J J, Zhang Q F, Zhang L L, et al. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells [J]. Nanoscale, 2013,5(3):936-943.

10.          Wang H B, Kubo T, Nakazaki J, et al. PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region [J]. Journal of Physical Chemistry Letters, 2013,4(15):2455-2460.

11.          Wu M X, Lin X, Wang Y D, et al. Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells [J]. Journal of Materials Chemistry A, 2015,3(39):19638-19656.

12.          Jiang Y, Yu B B, Liu J, et al. Boosting the Open Circuit Voltage and Fill Factor of QDSSCs Using Hierarchically Assembled ITO@Cu2S Nanowire Array Counter Electrodes [J]. Nano Letters,  2015,15(5):3088-3095.

13.          Ye M D, Chen C, Zhang N, et al. Quantum-Dot Sensitized Solar Cells Employing Hierarchical Cu2S Microspheres Wrapped by Reduced Graphene Oxide Nanosheets as Effective Counter Electrodes [J]. Advanced Energy Materials, 2014:201301564.

14.          Jiao S H, Xu L F, Jiang K, et al. Well‐Defined Non‐spherical Copper Sulfide Mesocages with Single‐Crystalline Shells by Shape‐Controlled Cu2O Crystal Templating [J]. Advanced Materials, 2006,18(9):1174-1177.

15.          Nan Z D, Wang X Y, Zhao Z B. Formation of various morphologies of copper sulfides by a solvothermal method [J]. Journal of Crystal Growth, 2006,295(1):92-96.

16.          Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Pal T. Evolution of Hierarchical Hexagonal Stacked Plates of CuS from Liquid− Liquid Interface and its Photocatalytic Application for Oxidative Degradation of Different Dyes under Indoor Lighting [J]. Environmental Science & Technology, 2010,44(16):6313-6318.

17.          Luther J M, Gao J, Lloyd M T, et al. Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell [J]. Advanced Materials, 2010,22(33):3704-3707.

18.          Yu X L, Cao C B, Zhu H S, et al. Nanometer‐Sized Copper Sulfide Hollow Spheres with Strong Optical‐Limiting Properties [J]. Advanced Functional Materials, 2007,17(8):1397-1401.

19.          Gao J N, Li Q S, Zhao H B, et al. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties [J]. Chemistry of Materials, 2008,20(19):6263-6269.

20.          Ye M D, Xin X K, Lin C J, et al. High Efficiency Dye-Sensitized Solar Cells Based on Hierarchically Structured Nanotubes [J]. Nano Letters, 2011,11(8):3214-3220.

21.          Li T L, Lee Y L, Teng H. High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure [J]. Energy & Environmental Science, 2012,5(1):5315-5324.

22.          Yang Z, Chen C Y, Liu C W, et al. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells [J]. Chemical Communications, 2010,46(30):5485-5487.

23.          Grozdanov I, Najdoski M. Optical and electrical properties of copper sulfide films of variable composition [J]. Journal of Solid State Chemistry, 1995,114(2):469-475.

24.          Chen C, Ye M D, Zhang N, et al. Preparation of hollow Co9S8 nanoneedle arrays as effective counter electrodes for quantum dot-sensitized solar cells [J]. Journal of Materials Chemistry A, 2015,3(12):6311-6314.

25.          Guo W X, Chen C, Ye M D, et al. Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells [J]. Nanoscale, 2014,6(7):3656-3663.

26.          Chen C, Ye M D, Lv M Q, et al. Ultralong Rutile TiO2 Nanorod Arrays with Large Surface Area for CdS/CdSe Quantum Dot-sensitized Solar Cells [J]. Electrochimica Acta 2014,121:175-182.

27.          Kumar P, Gusain M, Nagarajan R. Synthesis of Cu1. 8S and CuS from Copper-Thiourea Containing Precursors; Anionic (Cl, NO3, SO42−) Influence on the Product Stoichiometry [J]. Inorganic Chemistry, 2011,50(7):3065-3070.

28.          Ye M D, Wen X R, Zhang N, et al. In situ growth of CuS and Cu1.8S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells [J]. Journal of Materials Chemistry A, 2015,3(18):9595-9600.

29.          Guan X F, Huang S Q, Zhang Q X, et al. Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO2 nanotube arrays [J]. Nanotechnology, 2011,22(46):465402.

文章导航

/