欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

超薄Co3O4纳米片薄膜制备及其电化学传感器性能

  • 王慧娟
展开
  • 1. 电气工程学院 燕山大学,秦皇岛 066004;2. 河北省应用化学重点实验室 燕山大学,秦皇岛 066004

收稿日期: 2016-01-24

  修回日期: 2016-04-12

  网络出版日期: 2016-05-20

基金资助

河北省自然科学基金项目(B2015203350)和秦皇岛市科技支撑计划项目(201602A004)资助

Synthesis of Ultrathin Co3O4 Nanoflakes Film Material for Electrochemical Sensing

  • WANG Hui-juan
Expand
  • 1.College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China; 2. Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, Hebei, China.

Received date: 2016-01-24

  Revised date: 2016-04-12

  Online published: 2016-05-20

摘要

本文以电沉积的金属钴薄膜作为原材料,通过简单的氧化技术获得了薄膜前驱体材料,并进一步在350 oC热处理条件下获得了超薄Co3O4纳米片薄膜材料. 通过扫描电镜(SEM),X-射线衍射(XRD),透射电镜(TEM)等手段对材料的物理结构进行了深入分析,并通过循环伏安法(CV)表征了该薄膜材料的电化学活性. 作为电化学传感器件的活性材料,该薄膜材料对H2O2的检测表现出较宽的线性浓度检测范围(0 ~ 4 mmol•L-1)和较高的电流响应(~ 1.15 mA•cm-2),在该领域具有较高的应用价值.

本文引用格式

王慧娟 . 超薄Co3O4纳米片薄膜制备及其电化学传感器性能[J]. 电化学, 2016 , 22(6) : 631 -635 . DOI: 10.13208/j.electrochem.160124

Abstract

Ultrathin cobalt oxide (Co3O4 ) nanoflakes film material was synthesized by using an electro-deposited cobalt layer as a raw material through a simple oxidation method and followed by a heat treatment at 350 oC. The physical characterizations of the Co3O4  nanoflakes film were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technologies, and the electrochemical activity was measured by cyclic voltammetry (CV). As a promising material for electrochemical sensing, the as-synthesized ultrathin Co3O4  nanoflakes film material exhibited excellent electrochemical activity for H2O2 with a wide linear detection range (0 ~ 4 mmol•L-1) and high sensitive current response (~ 1.15 mA•cm-2).

参考文献

[1] Fan Y, Shao G, Ma Z, et al. Ultrathin Nanoflakes Assembled 3D Hierarchical Mesoporous Co3O4 Nanoparticles for High-rate Pseudocapacitors[J]. Particle Particle Systems Characterization, 2014, 31(10): 1079-1083.

[2] Li L, Liu M, He S, et al. Freestanding 3D Mesoporous Co3O4@Carbon Foam Nanostructures for Ethanol Gas Sensing[J]. Analytical Chemistry, 2014, 86(15): 7996−8002.

[3] Zhou X, Shen X, Xia Z, et al. Hollow Fluffy Co3O4 Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction[J]. ACS Applied Materials Interfaces, 2015, 7(36): 20322−20331.

[4] Huang G, Xu S, Lu S, et al. Micro-/Nanostructured Co3O4 Anode with Enhanced Rate Capability for Lithium-Ion Batteries[J] . ACS Applied Materials Interfaces, 2014, 6(10), 7236−7243.

[5] Qiu K, Lu Y, Cheng J, et al. Ultrathin mesoporous Co3O4 nanosheets on Ni foam for high-performance supercapacitors[J]. Electrochimica Acta, 2015, 157: 62–68.

[6] Chen M, Xia X, Yin J, et al. Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries[J]. Electrochimica Acta, 2015, 160: 15–21.

[7] Pan X, Chen X, Li Y, et al. Facile Synthesis of Co3O4 Nanosheets Electrode with Ultrahigh Specific Capacitance for Electrochemical Supercapacitors[J]. Electrochimica Acta, 2015, 182: 1101–1106.

[8] Zhang D E, Ren L Z, Hao X Y, et al. Synthesis and photocatalytic property of multilayered Co3O4 [J]. Applied Surface Science, 2015, 355: 547–552.

[9] Wang Y, Wang B, Xiao F, et al. Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries[J]. Journal of Power Sources, 2015, 298: 203-208.

[10] Pan G X, Xia X H, Cao F, et al. Construction of Co/ Co3O4-C ternary core-branch arrays as enhanced anode materials for lithium ion batteries[J]. Journal of Power Sources, 2015, 293(4): 585-591.

[11] Khun K, Ibupoto Z H, Liu X, et al. The ethylene glycol template assisted hydrothermal synthesis of Co3O4 nanowires; structural characterization and their application asglucose non-enzymatic sensor[J]. Materials Science and Engineering B, 2015, 194(1): 94–100.

[12] Meng T, Xu Q Q, Wang Z H, et al. Co3O4 Nanorods with Self-assembled Nanoparticles in Queue for Supercapacitor[J]. Electrochimica Acta, 2015, 180: 104–111.

[13] Chen H, Wang Y, Xu C. Facile and green synthesis of mesoporous Co3O4 nanowires[J]. Materials Letters, 2016, 163: 72–75.

[14] Jeon H S, Jee M S, Kim H, et al. Simple Chemical Solution Deposition of Co3O4 Thin Film Electrocatalyst for Oxygen Evolution Reaction[J]. ACS Applied Materials Interfaces, 2015, 7(44): 24550−24555.

[15] Liu J, Kelly S J, Epstein E S, et al. Three-dimensionally scaffolded Co3O4 nanosheet anodes with high rate performance. Journal of Power Sources[J], 2015, 299: 40-48

[16] Dam D T, Lee J M. Three-Dimensional Cobalt Oxide Microstructures with Brush-like Morphology via Surfactant-Dependent Assembly[J]. ACS Applied Materials Interfaces, 2014, 6(23): 20729−20737.

[17] Deng S, Xiao X, Xing X, et al. Structure and catalytic activity of 3D macro/mesoporous Co3O4 for CO oxidation prepared by a facile self-sustained decomposition of metal–organic complexes[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 79–85.

[18] Zou Y, Kinloch I A, Dryfe R A W. Mesoporous Vertical Co3O4 Nanosheet Arrays on Nitrogen-Doped Graphene Foam with Enhanced Charge-Storage Performance[J]. ACS Applied Materials Interfaces, 2015, 7(41): 22831−22838.

[19] Zhao X, Pang Z, Wu M, et al. Magnetic field-assisted synthesis of wire-like Co3O4 nanostructures: Electrochemical and photocatalytic studies[J]. Materials Research Bulletin, 2013, 48(48): 92–95.

[20] Fan Y, Shao H, Wang J, et al. Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities[J]. Chemical Communications, 2011, 47(12): 3469-3471.

[21] Fan Y, Zhang N, Zhang L, et al. Synthesis of Small-Sized Freestanding Co3O4 Nanosheets with Improved Activity for H2O2 Sensing and Oxygen Evolution[J]. Journal Electrochemical Society, 2013, 160(2): F218-F223.

[22] Fan Y, Zhang Y, Zhang L, et al. Co3O4-Coated TiO2 Nanotube Composites Synthesized through Photo-Deposition Strategy with Enhanced Performance for Lithium-Ion Batteries[J]. Electrochimica Acta,2013, 94: 285-293.

[23] Barkaoui S, Haddaoui M, Dhaouadi H, et al. Hydrothermal synthesis of urchin-like Co3O4 nanostructures and their electrochemical sensing performance of H2O2[J]. Journal of Solid State Chemistry, 2015, 228: 226–231.

[24] Wang M, Jiang X, Liu J, et al. Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method[J]. Electrochimica Acta, 2015, 182: 613–620.

[25] Wang N, Han Y, Xu Y, et al. Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Analytical Chemistry, 2014, 87(1):457-463.

[26] Wang G, Cao D, Yin C, et al. Nickel foam supported-Co3O4 nanowire arrays for H2O2 electroreduction. Chemistry of Materials, 2009, 21(21):5112-5118.

[27] Sun X, Go S, Liu Y, et al. Dumbbell-like Pt-Pd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Letters, 2012, 12(9):4859-4863.

文章导航

/