欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

H型电解池中CO2电化学还原的阳极电解液问题

  • 张 瑞 ,
  • 吕伟欣 ,
  • 雷立旭
展开
  • 1. 盐城工学院化学化工学院,江苏 盐城 224051; 2. 东南大学化学化工学院,南京 211189

收稿日期: 2016-01-21

  修回日期: 2016-06-14

  网络出版日期: 2016-06-20

基金资助

江苏省生态建材与环保装备协同创新中心和江苏省新型环保重点实验室联合资助(No. GX2015105)

The Problem of the Anode Electrolyte in H-Type Electrolytic Cell for Electrochemical Reduction of Carbon Dioxide

  • ZHANG Rui ,
  • LV Wei-xin ,
  • LEI Li-xu
Expand
  • 1 School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China; 2School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

Received date: 2016-01-21

  Revised date: 2016-06-14

  Online published: 2016-06-20

摘要

采用自制的H型电解池开展了KHCO3溶液中电化学还原CO2制甲酸的研究. 研究发现,在电解池中长时间电解时阴阳两极间的电压(槽电压)会持续升高,导致电解过程不可持续. 经过恒电位电解、恒电流电解、pH测试以及电解前后阳极室KHCO3浓度分析等实验研究,作者发现,这是由以下过程引起的:阳极上的析氧反应产生的H+与电解液中的HCO3-反应生成水和CO2,导致阳极室的HCO3-的消耗,之后阳极室的K+被迫扩散进入阴极室而导致阳极室电解质浓度下降. 因此,阳极室电解液导电性下降,进而引起阳极电位的升高. 研究发现,阳极电解液具有碱性时,都可能发生此种现象,因此,为了保证电解过程可持续且保持高的能量转换效率,阳极液的电解质不能是任何具有碱性的物质.

本文引用格式

张 瑞 , 吕伟欣 , 雷立旭 . H型电解池中CO2电化学还原的阳极电解液问题[J]. 电化学, 2017 , 23(1) : 72 -79 . DOI: 10.13208/j.electrochem.160121

Abstract

Electrochemical reduction of carbon dioxide (CO2) was studied in the H-type electrolytic cell. It was found that the voltage between the cathode and the anode would increase during the long time electrolysis process, for this reason the electrolytic process would be unsustainable. After the experimental investigations carried out by constant potential electrolysis, constant current electrolysis, pH test and KHCO3 concentration analysis of anode electrolyte before and after the electrolysis, the increase in cell voltage might be caused by the following process: H+, that was generated from the anodic oxygen evolution reaction, reacted with HCO3- to form water and CO2, and the HCO3-in the anode chamber was consumed; then K+ in the anode chamber was forced to spread into the cathode chamber which led to the decrease of the electrolyte concentration in the anode chamber. Therefore, the conductivity of the electrolyte solution in the anode chamber decreased, resulting in the rise of the anode potential. This phenomenon may happen in the alkaline electrolyte in an anode cell, therefore, in order to ensure the electrolysis process sustainable and keep high energy conversion efficiency, the anode electrolyte cannot be any alkaline substance.

参考文献

[1] Gao S, Lin Y, Jiao X, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71.

[2] Gao S, Jiao X, Sun Z, et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate[J]. Angewandte Chemie International Edition, 2016, 55(2): 698-702.

[3] Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2[J]. Chemical Reviews, 2014, 114(3): 1709-1742.

[4] Windle C D, Perutz R N. Advances in molecular photocatalytic and electrocatalytic CO2 reduction[J]. Coordination Chemistry Reviews, 2012, 256(21-22): 2562-2570.

[5] Qiao J, Liu Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675.

[6] Zhao C C (赵晨辰), Guo J W (郭建伟), Wang L (王莉), et al. Electrochemical reduction of CO2 on Sn/Cu electrode[J]. Journal of Electrochemistry (电化学), 2012, 18(2): 169-173.

[7] Wuttig A, Surendranath Y. Impurity ion complexation enhances carbon dioxide reduction catalysis[J]. ACS Catalysis, 2015, 5(7): 4479-4484.

[8] Zhao X Y, Luo B B, Long R, et al. Composition-dependent activity of Cu-Pt alloy nanocubes for electrocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2015, 3(8): 4134-4138.

[9] Zhong H, Fujii K, Nakano Y, et al. Effect of CO2 bubbling into aqueous solutions used for electrochemical Reduction of CO2 for Energy Conversion and Storage[J]. The Journal of Physical Chemistry C, 2015, 119(1): 55-61.

[10] Min X, Kanan M W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: High mass activity at low overpotential and identification of the deactivation pathway[J]. Journal of the American Chemical Society, 2015, 137(14): 4701-4708.

[11] Zhou F, Liu S, Yang B, et al. Highly selective and stable electro-catalytic system with ionic liquids for the reduction of carbon dioxide to carbon monoxide[J]. Electrochemistry Communications, 2015, 55: 43-46.

[12] Yan Y, Gu J, Bocarsly A B. Hydrogen bonded pyridine dimer: A possible intermediate in the electrocatalytic reduction of carbon dioxide to methanol[J]. Aerosol and Air Quality Research, 2014, 14(2): 515-521.

[13] Zhang R, Lv W X, Lei L X. Role of the oxide layer on Sn electrode in electrochemical reduction of CO2 to formate[J]. Applied Surface Science, 2015, 356: 24-29.

[14] Uslu H, Bayat C, Goekmen S, et al. Reactive extraction of formic acid by Amberlite LA-2 extractant[J]. Journal of Chemical and Engineering Data, 2009, 54(1): 48-53.

[15] Rejal S Z, Masdar M S, Kamarudin S K. A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover[J]. International Journal of Hydrogen Energy, 2014, 39(19): 10267-10274.

[16] Chang J, Feng L, Liu C, et al. An effective Pd–Ni2P/C anode catalyst for direct formic acid fuel cells[J]. Angewandte Chemie International Edition, 2014, 53(1): 122-126

[17] Sahin S, Bayazit S S, Bilgin M, et al. Investigation of formic acid separation from aqueous solution by reactive extraction: effects of extractant and diluent[J]. Journal of Chemical and Engineering Data, 2010, 55(4): 1519-1522.

[18] Lv W X, Zhang R, Gao P R, et al. Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode[J]. Journal of Power Sources, 2014, 253: 276-281.

[19] Zhang R, Lv W X, Li G H, et al. Retarding of electrochemical oxidation of formate on the platinum anode by a coat of Nafion membrane[J]. Journal of Power Sources, 2014, 272: 303-310.

[20] Zhang R, Lv W X, Li G H, et al. Electrochemical reduction of carbon dioxide to formate with a Sn cathode and an IrxSnyRuzO2/Ti anode[J]. RSC Advances, 2015, 5(84): 68662-68667.

[21] Kaneco S, Hiei N, Xing Y, et al. High-efficiency electrochemical CO2-to-methane reduction method using aqueous KHCO3 media at less than 273 K[J]. Journal of Solid State Electrochemistry, 2003, 7(3): 152-156.

[22] Oloman C, Li H. Electrochemical processing of carbon dioxide[J]. Chemsuschem, 2008, 1(5): 385-391.

[23] Alvarez-Guerra M, Quintanilla S, Irabien A. Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode[J]. Chemical Engineering Journal, 2012, 207-208: 278-284.

[24] Zhao H Z, Chang Y Y, Liu C. Electrodes modified with iron porphyrin and carbon nanotubes: application to CO2 reduction and mechanism of synergistic electrocatalysis[J]. Journal of Solid State Electrochemistry, 2013, 17(6): 1657-1664.

[25] Zhao H Z, Zhang Y, Zhao B, et al. Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode[J]. Environmental Science & Technology, 2012, 46(9): 5198-5204. Wang Q N, Dong H, Yu H B

[26] Wang Q N, Dong H, Yu H B. Development of rolling tin gas diffusion electrode for carbon dioxide
electrochemical reduction to produce formate in aqueous electrolyte [J]. Journal of Power Sources, 2014, 271: 278-284.

文章导航

/