欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学获奖人优秀论文专辑

富锂锰基材料xLi2MnO3•(1-x)LiMn1/3Ni1/3Co1/3O2(x = 0.3,0.5,0.7)的电化学和同步辐射研究

  • 侯孟炎 ,
  • 鲍洪亮 ,
  • 王 珂 ,
  • 王建强 ,
  • 夏永姚
展开
  • 1. 复旦大学化学系,上海 200433;2. 中科院上海应用物理研究所,上海 201800

收稿日期: 2016-03-16

  修回日期: 2016-05-25

  网络出版日期: 2016-06-02

基金资助

国家自然科学基金项目(No. 2011CB935903)和上海市科委项目(No. 13JC1407900)资助

Electrochemical and in situ X-ray Absorption Fine Structure Study of Li-Rich Cathode Materials

  • HOU Meng-yan ,
  • BAO Hong-liang ,
  • WANG Ke ,
  • WANG Jian-qiang ,
  • XIA Yong-yao
Expand
  • 1.Department of Chemistry, Fudan University, Shanghai, 200433, China; 2. Shanghai Institute of Applied Physics, CAS, Shanghai, 201800

Received date: 2016-03-16

  Revised date: 2016-05-25

  Online published: 2016-06-02

摘要

采用共沉淀的方法,以过渡金属硫酸盐为起始物质制备了一系列不同组成的富锂锰基正极材料xLi2MnO3•(1-x)LiMn1/3Ni1/3Co1/3O2(x = 0.3,0.5,0.7),通过XRD、Rietveld精修等物理手段比较了不同组成材料的结构特征. 通过对比不同比例材料的首周库仑效率、放电可逆容量、循环性能、电压降现象及不同温度下各比例富锂材料的倍率表现等电化学性能,确定 0.5Li2MnO3•0.5LiMn1/3Ni1/3Co1/3O2为该系列材料的最优比例. 然后采用原位X射线吸收谱技术,对富锂材料在首周活化过程中的机理进行了研究. 同步辐射结果表明,在首周充电过程中,镍和钴的价态分别从+2、+3价氧化到+4价,而对于锰来讲,虽然在富锂锰基材料活化的过程中其周围的局域电子结构发生了一定的变化,但是其化合价始终维持在+4价没有发生变化.

本文引用格式

侯孟炎 , 鲍洪亮 , 王 珂 , 王建强 , 夏永姚 . 富锂锰基材料xLi2MnO3•(1-x)LiMn1/3Ni1/3Co1/3O2(x = 0.3,0.5,0.7)的电化学和同步辐射研究[J]. 电化学, 2016 , 22(3) : 288 -298 . DOI: 10.13208/j.electrochem.151248

Abstract

A series of the lithium-rich and manganese-based layered structure xLi2MnO3•(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3,0.5,0.7) materials were synthesized by a co-precipitation method, and followed by a solid-state reaction process. By comparing the first cycle efficiency, the reversible discharge capacity, the cycling stability and the voltage decay during the charge/discharge cycling process, the material with the composition of 0.5Li2MnO3•0.5LiMn1/3Ni1/3Co1/3O2was found to show the best electrochemical performance. The lithium storage mechanism and thermal stability of the de-lithiated compound were also investigated by in situ X-ray absorption fine structure (XAFS) spectroscopy and differential scanning calorimetry (DSC) techniques. The results of XAFS indicates that during the charging process to 4.5 V, the Ni and Co ions are oxidized to Ni4+ and Co4+, respectively, while the Mn ion remains Mn4+.

参考文献

[1] Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters, 2001, 7: 642-643.

[2] Chen C H, Liu J, Stoll M E, et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries [J]. Journal of Power Sources, 2004, 128(2): 278-285.

[3] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125.

[4] Kim J S, Johnson C S, Thackeray M M. Layered xLiMO2·(1-x)Li2M'O3 electrodes for lithium batteries: A study of 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3[J]. Electrochemistry Communications, 2002, 4(3): 205-209.

[5] Kim J S, Johnson C S, Vaughey J T, et al. Electrochemical and structural properties of xLi2M'O3·(1-x)LiMn0.5Ni0.5O2 eIectrodes for lithium batteries (M' = Ti, Mn, Zr; 0 ≤ x ≤ 0.3)[J]. Chemistry of Materials, 2004, 16(10): 1996-2006.

[6] Johnson C S, Li N C, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7)[J]. Chemistry of Materials, 2008, 20(19): 6095-6106.

[7] Amalraj F., Kovacheva D, Talianker M, et al. Synthesis of integrated cathode materials xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and studies of their electrochemical behavior (vol 157, A1121, 2010) [J]. Journal of the Electrochemical Society, 2010, 157(11): S19-S19.

[8] Toprakci O, Toprakci H A K, Li Y, et al. Synthesis and characterization of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries [J]. Journal of Power Sources, 2013, 241: 522-528.

[9] Zhao Y J, Ren W F, Wu R, et al. Improved molten salt synthesis and structure evolution upon cycling of 0.5Li2MnO3·0.5LiCoO2 in lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2013, 17(8): 2259-2267.

[10] Li J G, Wang L, Wang L, et al. Synthesis and characterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O2 cathode material for Li-ion batteries[J]. Journal of Power Sources, 2013, 244: 652-657.

[11] Ohzuku T, Nagayama M, Tsuji K, et al. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mAh·g-1[J]. Journal of Materials Chemistry, 2011, 21(27): 10179-10188.

[12] Gong Z L, Liu H S, Guo X J, et al. Effects of preparation methods of LiNi0.8Co0.2O2 cathode materials on their morphology and electrochemical performance[J]. Journal of Power Sources, 2004, 136(1): 139-144.

[13] Yoon W S, Iannopollo S, Grey C P, et al. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry LiNixMn(2-x)/3Li(1-2x)/3O2 - NMR studies and first principles calculations[J]. Electrochemical and Solid State Letters, 2004, 7(7): A167-A171.

[14] Kim G Y,  Yi S B, Park Y J, et al. Electrochemical behaviors of Li Li(1-x)/3Mn(2-x)/3Nix/3Cox/3 O2 cathode series (0 < x < 1) synthesized by sucrose combustion process for high capacity lithium ion batteries [J]. Materials Research Bulletin, 2008, 43(12): 3543-3552.

[15] Lee E S, Huq A, Manthiram A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries [J]. Journal of Power Sources, 2013, 240: 193-203.

[16] Liu J L, Liu J Y, Wang R H, et al. Degradation and structural evolution of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 during cycling[J]. Journal of the Electrochemical Society, 2014, 161(1): A160-A167.

[17] Deng H, Belharouak I, Wu H, et al. Effect of cobalt incorporation and lithium enrichment in lithium nickel manganese oxides[J]. Journal of the Electrochemical Society, 2010, 157(7): A776-A781.

[18] Li Z, Chernova N A, Feng J J, et al. Stability and rate capability of Al substituted lithium-rich high-manganese content oxide materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(2): A116-A120.

[19] Rana J, Kloepsch R, Li J, et al. On the structural integrity and electrochemical activity of a 0.5Li2MnO3center dot 0.5LiCoO2 cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(24): 9099-9110.

[20] Croy J R, Kang S H, Balasubramanian M, et al. Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures[J]. Electrochemistry Communications, 2011, 13(10): 1063-1066.

[21] Ito A, Sato Y, Sanada T, et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material LiNi0.17Li0.2Co0.07Mn0.56O2[J]. Journal of Power Sources, 2011, 196(16): 6828-6834.

[22] Balasubramanian M, McBreen J, Davidson I J, et al. In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material[J]. Journal of the Electrochemical Society, 2002, 149(2): A176-A184.

文章导航

/