欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Pt/C催化剂氧还原反应的交流阻抗动态研究

  • 史坤明 ,
  • 郭建伟 ,
  • 王佳
展开
  • 1.中国海洋大学化学化工学院,山东青岛 266003; 2. 清华大学核能与新能源技术研究院,北京 100084

收稿日期: 2016-03-10

  修回日期: 2016-04-10

  网络出版日期: 2016-04-27

基金资助

国家自然科学基金项目(51273103, 50873050, 51573084)、国家973计划(2012CB215500)资助

The Study of Dynamical Electrochemical Impedance Spectroscopy for Oxygen Reduction Reaction on Pt/C Catalyst

  • SHI Kun-ming ,
  • GUO Jian-wei ,
  • WANG Jia
Expand
  • 1 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003,Shandong, China; 2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

Received date: 2016-03-10

  Revised date: 2016-04-10

  Online published: 2016-04-27

摘要

本文通过RDE和EIS联合技术、等效电路模型,研究了酸性体系中商业Pt/C催化剂ORR行为. 研究发现Pt/C动态界面包括两个彼此独立的过程:1)Pt表面原有PtO还原至Pt过程,2)ORR促进新PtO形成过程,为催化材料稳定性及活化性提供了关键依据;并发现动态界面促进多孔电极重构以及与传输匹配过程.在高过电位下,ORR的高反应速率可通过增加催化材料憎水性予以改善. 上述研究结果可对ORR的直流电化学研究进行有效补充,并提供建模基础.

本文引用格式

史坤明 , 郭建伟 , 王佳 . Pt/C催化剂氧还原反应的交流阻抗动态研究[J]. 电化学, 2016 , 22(5) : 542 -548 . DOI: 10.13208/j.electrochem.160310

Abstract

With joint techniques of rotating disc electrode(RDE) and electrochemical impedance spectroscopy(EIS), and further establishment on equivalent circuit model, this paper studied oxygen reduction reaction(ORR) on commercial Pt/C catalyst in acid medium. Our results found that the dynamical interface on Pt/C consists of two independent processes: 1) the PtO reduction from Pt surface, 2) the new PtO formation from ORR, thus providing key clues for catalyst stability and activity. This also implied that the dynamical interface facilitates reconstruction for porous electrode, and matches with mass transfer. One important issue is discovered that at high overpotential, the high reaction rate for ORR can be further improved if providing hydrophobicity on catalyst surface. All these efforts on ORR progress not only compensate for DC electrochemistry study, but also provide basis for future model establishment.

参考文献

[1]   YI B L(衣宝廉). Fuel cells - efficient and environmentally friendly way of generating燃料电池高效、环境友好的发电方式[M]. Beijing: Chemical Industry Press, 2000. 1-5.

[2]  Mao Z Q(毛宗强). Fuel cells(燃料电池)[M]. Beijing: Chemical Industry Press, 2005. 1-32.

[3]   Chai G S, Yoon S B, Yu J S, et al. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell[J]. Journal of Physical Chemistry B. 2004,108(22):7074- 7079.

[4]   Taleb M, Nerut J, Tooming T, et al. Oxygen Electroreduction on Platinum Nanoparticles Deposited onto D-Glucose Derived Carbon[J]. Journal of The Electrochemical Society. 2015, 162(7): F651-F660.

[5]   Markovi? N M, Schmidt T J, Stamenkovi? V, et al. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review[J]. Fuel Cells. 2001,1(2):105-116.

[6]   Britto P J, Santhanam K S V, Rubio A, et al. Improved charge transfer at carbon nanotube electrodes[J]. Advanced Materals. 1999,11(2):154-157.

[7]   Keith J A, Jacob T. Theoretical Studies of Potential-Dependent and Competing Mechanisms of the Electrocatalytic Oxygen Reduction Reaction on Pt(111)[J]. Angewandte Chemie International Edition. 2010,49(49):9521-9525.

[8]   Inasaki T, Kobayashi S. Particle size effects of gold on the kinetics of the oxygen reduction at chemically prepared Au/C catalysts[J]. Electrochimica Acta. 2009,54(21):4893-4897.

[9]   Ji M B, Wei Z D, Chen S G, et al. Electrochemical impedance spectroscopy evidence of dimethyl-silicon-oil enhancing O2 transport in a porous electrode[J]. Electrochimica Acta. 2011,56(13):4797-4802.

[10] Vázquez-Huerta G, Ramos-Sánchez G, Rodríguez-Castellanos A, et al. Electrochemical analysis of the kinetics and mechanism of the oxygen reduction reaction on Au nanoparticles[J]. Journal of Electroanalytical Chemistry. 2010,645(1):35-40.

[11] Cruz-Manzo S, Chen R, Greenwood P. An impedance model for analysis of EIS of polymer electrolyte fuel cells under hydrogen peroxide formation in the cathode[J]. Journal of Electroanalytical Chemistry. 2015,745:28-36.

[12] Perez J, Gonzalez E R, Ticianelli E A. Oxygen electrocatalysis on thin porous coating rotating platinum electrodes[J]. Electrochimica Acta. 1998,44(8-9):1329-1339.

[13] Singh R K, Devivaraprasad R, Kar T, et al. Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support[J]. Journal of The Electrochemical Society. 2015,162(6):F489-F498.

[14] Jerkiewicz G, Vatankhah G, Lessard J, et al. Surface-oxide growth at platinum electrodes in aqueous H2SO4 Reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements[J].      Electrochimica Acta. 2004,49:1451–1459.

[15] Zhao M, Shi W Y, Wu B B, et al. Analysis of carbon-supported platinum through potential cycling and potential-static holding[J]. International Journal of Hydrogen Energy. 2014,39(25): 13725–13737.

[16] Gomez-Marin A M, Feliu J M. New Insights into the Oxygen Reduction Reaction Mechanism on Pt(111): A Detailed Electrochemical Study[J]. Chemsuschem. 2013,6(6):1091-100.

[17] Gomez-Marin A M, Rizo R, Feliu J M. Some reflections on the understanding of the oxygen reduction reaction at Pt(111)[J]. Beilstein Journal of Nanotechnology. 2013,4:956-967.

[18] Zhao D, Yi B L, Zhang H M, et al. The effect of platinum in a Nafion membrane on the durability of the membrane under fuel cell conditions[J]. Journal of Power Sources. 2010,195(15) 4606–4612.

[19] Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical society reviews.2015, 44:2168-2201.

[20] Tanaka H, Nagahara Y, Sugawara S, et al. The Influence of Pt Oxide Film on the Activity for the Oxygen Reduction Reaction on Pt Single Crystal Electrodes[J]. Electrocatalysis-Us. 2014,5 (4):354-360.

[21] Shinozaki K, Zack J W, Pylypenko S, et al. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique[J]. Journal of The Electrochemical Society. 2015,162(12):F1384-F1396.

[22] Bondarenko A S, Stephens I E, Hansen H A, et al. The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study[J]. Langmuir. 2011,27(5):2058-2066.

[23] Genies L, Bultel Y, Faure R, et al. Impedance study of the oxygen reduction reaction on platinum nanoparticles in alkaline media[J]. Electrochimica Acta. 2003,48(25-26):3879-3890.

[24] Bultel Y, Wiezell K, Jaouen F, et al. Investigation of mass transport in gas diffusion layer at the air cathode of a PEMFC[J]. Electrochimica Acta. 2005,51(3):474-488.

[25] Xia Y Z, Nguyen T T, Fontana S, et al. Development of half-cells with sulfonated Pt/Vulcan catalyst for PEM fuel cells[J]. Journal of Electroanalytical Chemistry. 2014,724:62-70.

[26] Antolini E, Giorgi L, Pozio A, et al. Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC[J]. Journal of Power Sources. 1999,77(2):136-142.

[27] Xie Z, Holdcroft S. Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes[J]. Journal of Electroanalytical Chemistry. 2004,568:247-260.

[28] Liu H, Li J, Xu X, et al. Highly graphitic carbon black-supported platinum nanoparticle catalyst and its enhanced electrocatalytic activity for the oxygen reduction reaction in acidic medium[J]. Electrochimica Acta. 2013,93:25-31.

文章导航

/