欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

表面修饰模式对Nafion离子选择性影响及在VRFB中的应用

  • 谭青龙 ,
  • 王海宁 ,
  • 卢善富 ,
  • 梁大为 ,
  • 武春晓 ,
  • 相艳
展开
  • 北京航空航天大学空间与环境学院,仿生能源材料与器件北京市重点实验室,北京,100191

收稿日期: 2016-03-07

  修回日期: 2016-04-06

  网络出版日期: 2016-04-22

基金资助

This work was financially supported by grants from the National Natural Science Foundation of China (No. 51422301), Beijing Higher Education Young Elite Teacher Project (No. 29201493) and the Fundamental Research Funds for the Central Universities(No.YWF-16-BJ-Y-68).

Effects of surface modification modes on proton-over-vanadium ion selectivity of Nafion®membrane for application in vanadium redox flow battery

  • Qinglong Tan ,
  • Haining Wang ,
  • Shanfu Lu ,
  • Dawei Liang ,
  • Chunxiao Wu ,
  • Yan Xiang
Expand
  • Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China

Received date: 2016-03-07

  Revised date: 2016-04-06

  Online published: 2016-04-22

Supported by

This work was financially supported by grants from the National Natural Science Foundation of China (No. 51422301), Beijing Higher Education Young Elite Teacher Project (No. 29201493) and the Fundamental Research Funds for the Central Universities(No.YWF-16-BJ-Y-68).

摘要

本文采用壳聚糖-磷钨酸层对Nafion膜表面分别进行单面和双面修饰改性,研究了修饰模式对Nafion膜钒离子渗透率、电导率及离子选择性的影响. 结果表明,单面、双面修饰改性均会使Nafion膜的钒离子渗透率显著降低,最高降幅分别达到89.9% (单面修饰) 和92.7% (双面修饰);单面、双面修饰改性均会使Nafion膜的电导率下降,但存在明显差异,在相同修饰厚度条件下,双面修饰改性对Nafion膜电导率的影响比单面修饰改性更小。因此,双面修饰复合膜展示出了比单面修饰复合膜更高的离子选择性,并且在修饰层厚度为17 μm时达到最大值(1.12×105 S•min•cm-3). 基于优化的双面修饰Nafion膜的全钒液流电池,在充放电流密度30 mA•cm-2 时,库伦效率和能量效率分别达到93.5%和 80.7%, 并且在测试时间内展示出良好的循环稳定性.

本文引用格式

谭青龙 , 王海宁 , 卢善富 , 梁大为 , 武春晓 , 相艳 . 表面修饰模式对Nafion离子选择性影响及在VRFB中的应用[J]. 电化学, 2017 , 23(4) : 409 -419 . DOI: 10.13208/j.electrochem.160307

Abstract

The effect of surface modification modes on proton-over-vanadium ion selectivity was studied by spin-coating chitosan-Phosphotungstic Acid (PWA) as a single or double layer on Nafion membrane surface. To suppress the vanadium ions permeation through the Nafion? membrane in a vanadium redox flow battery (VRFB), the single surface-modified Nafion membrane (Nafion/chitosan-PWA)S and double surface-modified Nafion membrane (Nafion/chitosan-PWA)D demonstrated a 89.9% and 92.7% reduction of vanadium ion permeability in comparison with pristine Nafion, respectively. The (Nafion/chitosan-PWA)D exhibited betterhigher selectivity between proton and vanadium ions than the (Nafion/chitosan-PWA)S at the same layer thickness. Furthermore, the columbic efficiency for the VRFB single cell based on the (Nafion/chitosan-PWA)D at an optimized thickness was 93.5% and the energy efficiency was 80.7% at a charge-discharge current density of 30 mA·cm-2, which wereas higher than the (Nafion/chitosan-PWA)S and pristine Nafion membrane. The modified membranes also possessed adequate chemical stability in the VRFB during charge-discharge cycling measurements.

参考文献

[1]   Sum E., Rychcik M., Skyllas-Kazacos M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery [J]. Journal of Power Sources, 1985, 16(2): 85-95.

[2]   Xu Q, Zhao T S, Leung P k. Numerical investigations of flow field designs for vanadium redox flow batteries [J]. Applied Energy, 2013, 105: 47-56.

[3]   Zhang C, Zhao T S, Xu Q, et al. Effects of operating temperature on the performance of vanadium redox flow batteries [J]. Applied Energy, 2015, 155: 349-353.

[4]   Wang W, Luo Q T, Li B, et al. Recent progress in redox flow battery research and development [J]. Advanced Functional Materials, 2013, 23(8): 970-986.

[5]   Shen J, Xi J Y, Zhu W T, et al. A nanocomposite proton exchange membrane based on PVDF, poly (2-acrylamido-2-methyl propylene sulfonic acid), and nano-Al2O3 for direct methanol fuel cells [J]. Journal of Power Sources, 2006, 159(2): 894-899.

[6]   Li X F, Zhang H M, Mai Z S, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications [J]. Energy & Environmental Science, 2011, 4(4): 1147-1160.

[7]   Xi J Y, Wu Z H, Qiu X P, et al. Nafion/SiO2 hybrid membrane for vanadium redox flow battery [J]. Journal of Power Sources, 2007, 166(2): 531-536.

[8]   Wang Z, Tang H L, Zhang H J, et al. Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell [J]. Journal of Membrane Science, 2012, 421:201-210.

[9]   Teng X G, Zhao Y T, Xi J Y, et al. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions [J]. Journal of Membrane Science, 2009, 341(1): 149-154.

[10] Teng X G, Zhao Y T, Xi J Y, et al. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery [J]. Journal of Power Sources, 2009, 189(2): 1240-1246.

[11] Mai Z S, Zhang H M, Li X F, et al. Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application [J]. Journal of Power Sources, 2011, 196(13): 5737-5741.

[12] Jie Z, Tang H L, Mu P. Fabrication and characterization of self-assembled Nafion-SiO2-ePTFE composite membrane of PEM fuel cell [J]. Journal of Membrane Science, 2008, 312(1): 41-47.

[13] Teng X G, Dai J C, Su J, et al. A high performance polytetrafluoroethene/Nafion composite membrane for vanadium redox flow battery application [J]. Journal of Power Sources, 2013, 240:131-139.

[14] Wang N F, Peng S, Lu D, et al. Nafion/TiO2 hybrid membrane fabricated via hydrothermal method for vanadium redox battery [J]. Journal of Solid State Electrochemistry, 2012, 16(4): 1577-1584.

[15] Kim Jihoon, Jeon Jae-Deok, Kwak Seung-Yeop. Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery [J]. Electrochemistry Communications, 2014, 38:68-70.

[16] Teng X G, Dai J C, Su J, et al. Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery [J]. Journal of Membrane Science, 2015, 476: 20-29.

[17] Yang B, Manthiram A. Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells [J]. Electrochemistry communications, 2004, 6(3): 231-236.

[18] Yang M, Lu S F, Lu J L, et al. Layer-by-layer self-assembly of PDDA/PWA-Nafion composite membranes for direct methanol fuel cells [J]. Chemical Communications, 2010, 46(9): 1434-1436.

[19] Mu S C, Tang H L, Wan Z H, et al. Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barriers [J]. Electrochemistry Communications, 2005, 7(11): 1143-1147.

[20] Tang H L, Pan M, Jiang S P, et al. Self-assembling multi-layer Pd nanoparticles onto Nafion™ membrane to reduce methanol crossover [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262(1): 65-70.

[21] Xi J Y, Wu Z H, Teng X G, et al. Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries [J]. Journal of Materials Chemistry, 2008, 18(11): 1232-1238.

[22] Zeng J, Jiang C P, Wang Y H, et al. Studies on polypyrrole modified nafion membrane for vanadium redox flow battery [J]. Electrochemistry Communications, 2008, 10(3): 372-375.

[23] Luo Q T, Zhang H M, Chen J, et al. Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications [J]. Journal of Membrane Science, 2008, 311(1): 98-103.

[24] Luo Q T, Zhang H M, Chen J, et al. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery [J]. Journal of Membrane Science, 2008, 325(2): 553-558.

[25] Xiang Y, Zhang J, Liu Y, et al. Design of an effective methanol-blocking membrane with purple membrane for direct methanol fuel cells [J]. Journal of Membrane Science, 2011, 367(1): 325-331.

[26] Mengatto L, Luna J A, Cabrera M I. Influence of cross-linking density on swelling and estradiol permeation of chitosan membranes [J]. Journal of Materials Science, 2010, 45(4): 1046-1051.

[27] Lu S F, Wu C X, Liang D W, et al. Layer-by-layer self-assembly of Nafion-[CS-PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications [J]. RSC Advances, 2014, 4(47): 24831-24837.

[28] Lu J L, Tang H L, Lu S F, et al. A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells [J]. Journal of Materials Chemistry, 2011, 21(18): 6668-6676.

[29] Jiang S P, Liu Z C, Tian Z Q. Layer-by-Layer Self-Assembly of Composite Polyelectrolyte-Nafion Membranes for Direct Methanol Fuel Cells [J]. Advanced Materials, 2006, 18(8): 1068-1072.

[30] Zhang F X, Zhang H M, Qu C. A Dication Cross-Linked Composite Anion-Exchange Membrane for All-Vanadium Flow Battery Applications [J]. ChemSusChem, 2013, 6(12): 2290-2298.

[31] Pan J, Lu S F, Li Y, et al. High-Performance Alkaline Polymer Electrolyte for Fuel Cell Applications [J]. Advanced Functional Materials, 2010, 20(2): 312-319.

[32] Luo X L, Lu Z Z, Xi J Y, et al. Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries [J]. The Journal of Physical Chemistry B, 2005, 109(43): 20310-20314.

[33] Teng X G, Dai J C, Bi FY, et al. Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery [J]. Journal of Power Sources, 2014, 272:113-120.

[34] Chen D Y, Hickner M A, Agar E, et al. Optimized anion exchange membranes for vanadium redox flow batteries [J]. ACS Applied Materials &Interfaces, 2013, 5(15): 7559-7566.

[35] Cui Z L, Drioli E, Lee Y M. Recent progress in fluoropolymers for membranes [J]. Progress in Polymer Science, 2014, 39(1): 164-198.

[36] Hsu W Y, Gierke T D. Ion transport and clustering in Nafion perfluorinated membranes [J]. Journal of Membrane Science, 1983, 13(3): 307-326.

[37] Cui Z M, Xing W, Liu C P, et al. Chitosan/heteropolyacid composite membranes for direct methanol fuel cell [J]. Journal of Power Sources, 2009, 188(1): 24-29.

[38] Shakeri S E, Ghaffarian S R, Tohidian M, et al. Polyelectrolyte Nanocomposite Membranes, Based on Chitosan-phosphotungstic Acid Complex and Montmorillonite for Fuel Cells Applications [J]. Journal of Macromolecular Science, Part B, 2013, 52(9): 1226-1241.

[39] Jae D J, Seung Y K. Ionic cluster size distributions of swollen Nafion/sulfated beta-cyclodextrin membranes characterized by nuclear magnetic resonance cryoporometry [J]. Journal of Physical Chemistry B, 2007, 111(32): 9437-9443.

[40] Zhang B G, Zhang E L, Wang G S, et al. Poly (phenyl sulfone) anion exchange membranes with pyridinium groups for vanadium redox flow battery applications [J]. Journal of Power Sources, 2015, 282:328-334.

[41] Mai Z S, Zhang H M, Zhang H Z, et al. Anion-Conductive Membranes with Ultralow Vanadium Permeability and Excellent Performance in Vanadium Flow Batteries [J]. ChemsusChem, 2013, 6(2): 328-335.

[42] Xu W X, Zhao Y Y, Yuan Z Z, et al. Highly Stable Anion Exchange Membranes with Internal Cross-Linking Networks [J]. Advanced Functional Materials, 2015, 25(17): 2583-2589.

文章导航

/