欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

壳聚糖/硝酸铁凝胶制备铁氮掺杂多孔碳片作为高效氧还原电催化剂的研究

  • 孟凡陆 ,
  • 张新波 ,
  • 鄢俊敏
展开
  • 1. 吉林大学材料科学与工程学院,汽车材料教育部重点实验室,吉林 长春 130022;2. 中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,吉林 长春 130022

收稿日期: 2015-12-30

  修回日期: 2016-03-15

  网络出版日期: 2021-12-17

基金资助

基金委 优青 (21422108)资助

Chitosan/Nonahydrate Gel Derived Fe-N-Doped Porous Carbon Sheet as High-Efficient ORR Electrocatalyst

  • MENG Fan-Lu ,
  • ZHANG Xin-Bo ,
  • YAN Jun-Min
Expand
  • (1. Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun 130012, China; 2. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130012, China)

Received date: 2015-12-30

  Revised date: 2016-03-15

  Online published: 2021-12-17

摘要

以壳聚糖/硝酸铁凝胶为前躯体,实现了含氮高分子与金属盐的均匀混合,将凝胶冷冻干燥处理后,经过热处理和酸刻蚀得到了成分及微结构更加均匀的铁氮掺杂多孔碳片. 铁氮掺杂多孔碳片与商业铂碳相比,具有更高的起始电位,半波电位和优秀的循环性能,在碱性燃料电池的测试中实现了更高的功率密度. 铁氮掺杂多孔碳片出色的氧还原电催化性能归因于铁在壳聚糖中的原子级分散所导致的均匀分布的铁氮碳催化活性位,大的比表面积和均匀的孔道分布.

本文引用格式

孟凡陆 , 张新波 , 鄢俊敏 . 壳聚糖/硝酸铁凝胶制备铁氮掺杂多孔碳片作为高效氧还原电催化剂的研究[J]. 电化学, 2016 , 22(6) : 624 -630 . DOI: 10.13208/j.electrochem.151231

Abstract

The chitosan/nonahydrate gel was used as a precursor to realize the uniform mixture of N-polymer and metal salt. After lyophilization treatment, the gel went through heat treatment and acid etch. Accordingly, the Fe-N-doped porous carbon sheet with homogenous composition and microstructure was prepared. Compared with the commercial Pt/C catalyst, the Fe-N-doped porous carbon sheet exhibited more positive onset potential and half-wave potential, higher current density, and especially, excellent durability. The power density of 318 mW·cm-2 was obtained in alkaline fuel cell with the Fe-N-doped porous carbon sheet as a cathode catalyst, which is higher than 267 mW·cm-2 with the Pt/C as a cathode catalyst. The improved cell perforence with the Fe-N-doped porous carbon sheet might be contributed to the atomicaly dispersed iron in chitosan, which results in the homogenous dispersion of Fe-N-C active site, high specific surface area and pore size distribution.

参考文献

[1] Zhang S, Hao Y, Su D, et al. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction[J]. Journal of the American Chemical Society, 2014, 136(45): 15921-15924.

[2] Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature materials, 2013, 12(1): 81-87.

[3] Ruan L, Zhu E, Chen Y, et al. Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability[J]. Angewandte Chemie International Edition, 2013, 52(48): 12577-12581. [4] Nesselberger M, Roefzaad M, Hamou R F, et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters[J]. Nature materials, 2013, 12(10): 919-924.

[5] Lu Y, Jiang Y, Gao X, et al. Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts[J]. Journal of the American Chemical Society, 2014, 136(33): 11687-11697.

[6] Hoque M A, Hassan F M, Higgins D, et al. Multigrain Platinum Nanowires Consisting of Oriented Nanoparticles Anchored on Sulfur-Doped Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst[J]. Advanced Materials, 2015, 27(7): 1229-1234.

[7] Guo S, Zhang S, Su D, et al. Seed-mediated synthesis of core/shell FePtM/FePt (M= Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135(37): 13879-13884.

[8] Guo S, Li D, Zhu H, et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013, 52(12): 3465-3468.

[9] Zhao X, Chen S, Fang Z, et al. Octahedral Pd@ Pt1. 8Ni Core–Shell Nanocrystals with Ultrathin PtNi Alloy Shells as Active Catalysts for Oxygen Reduction Reaction[J]. Journal of the American Chemical Society, 2015, 137(8): 2804-2807.

[10] Shui J, Chen C, Li J. Evolution of nanoporous Pt–Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction[J]. Advanced Functional Materials, 2011, 21(17): 3357-3362.

[11] Zhu Y, Zhang B, Liu X, et al. Unravelling the Structure of Electrocatalytically Active Fe–N Complexes in Carbon for the Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2014, 53(40): 10673-10677.

[12] Wu G, More K L, Johnston C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447.

[13] Chang S T, Wang C H, Du H Y, et al. Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells[J]. Energy & Environmental Science, 2012, 5(1): 5305-5314.

[14] Zhao Y, Watanabe K, Hashimoto K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer[J]. Journal of the American Chemical Society, 2012, 134(48): 19528-19531.

[15] Yuan S, Shui J L, Grabstanowicz L, et al. A Highly Active and SupportFree Oxygen Reduction Catalyst Prepared from UltrahighSurfaceArea Porous Polyporphyrin[J]. Angewandte Chemie International Edition, 2013, 52(32): 8349-8353.

[16] Wu Z S, Chen L, Liu J, et al. HighPerformance Electrocatalysts for Oxygen Reduction Derived from Cobalt PorphyrinBased Conjugated Mesoporous Polymers[J]. Advanced Materials, 2014, 26(9): 1450-1455.

[17] Liang H W, Wei W, Wu Z S, et al. Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-16005.

文章导航

/