欢迎访问《电化学(中英文)》期刊官方网站,今天是
燃料电池电化学催化与催化剂近期研究专辑(重庆大学 魏子栋教授主编)

包覆型非贵金属氧还原催化剂的研究进展

  • 肖梅玲 ,
  • 祝建兵 ,
  • 刘长鹏 ,
  • 葛君杰 ,
  • 邢 巍
展开
  • 1. 中国科学院长春应用化学研究所,电分析国家重点实验室,吉林 长春 130022;2. 中国科学院长春应用化学研究所,先进化学电源实验室,吉林 长春 130022

收稿日期: 2016-01-05

  修回日期: 2016-02-29

  网络出版日期: 2016-04-28

基金资助

科技部973项目(No. 2012CB215500)、国家自然科学基金项目(No. 21373199,No. 21433003)、中国科学院先导专项(No. XDA09030104)、吉林省科技发展项目(No. 20130206068GX,No. 20140203012SF,No. 20102204)和吉林省自然科学基金项目(No. 20150101066JC)资助

Recent Progress in Non-Precious Metal Oxygen Reduction Reaction Catalysts with an Encapsulation Structure

  • XIAO Mei-ling ,
  • ZHU Jian-bing ,
  • LIU Chang-peng ,
  • GE Jun-jie ,
  • XING Wei
Expand
  • 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; 2. Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Changchun 130022, China

Received date: 2016-01-05

  Revised date: 2016-02-29

  Online published: 2016-04-28

摘要

燃料电池中广泛使用的铂基催化剂价格昂贵、储量低、容易失活,因此亟待开发廉价、高效非铂催化剂. 过渡金属(Fe、Co、Ni等)/杂原子共掺杂催化剂、杂原子掺杂(N、P、S、F等)碳材料以及碳材料包覆过渡金属复合物是目前发现的几类性能优异的非贵金属氧还原催化剂. 其中碳材料包覆过渡金属催化剂作为一类新型的高性能催化剂,对其研究还有待深入. 本文主要阐述了国内外在包覆型非贵金属氧还原催化剂方面的研究进展,从合成,性能,机理等方面对该类催化剂进行了总结,力求助益于该类催化剂的发展.

本文引用格式

肖梅玲 , 祝建兵 , 刘长鹏 , 葛君杰 , 邢 巍 . 包覆型非贵金属氧还原催化剂的研究进展[J]. 电化学, 2016 , 22(2) : 101 -112 . DOI: 10.13208/j.electrochem.151152

Abstract

Platinum-based materials, the state-of-the-art catalysts for fuel cells, suffer from prohibitive costs, limited resources and insufficient durability. Accordingly, tremendous efforts were made in searching for efficient, durable and inexpensive alternatives to precious-metal electrocatalysts for the oxygen reduction reaction (ORR). Transition-metals (Fe, Co)/nitrogen co-doped hybrids, heteroatom (N, P, S, F, et al) doped carbons and composites with transition-metals encapsulated in graphitic layers are reported as the most efficient non-precious metal ORR catalysts. Among the various non-precious metal ORR catalysts, transition-metals encased in graphitic layer catalysts are a novel type of catalysts for ORR with high activity and durability, and thus, the in-depth researches are highly desirable. Here, we present the recent research progress in transition-metals encased catalysts from the aspects of synthesis, activity and catalytic mechanism, in an effort to promote the developments of these catalysts.

参考文献

[1] Jasinski R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201(4925): 1212-1213. [2] Randin J P. Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction[J]. Electrochimica Acta, 1974, 19(2): 83-85. [3] Collman J P, Denisevich P, Konai Y, et al. Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins[J]. Journal of the American Chemical Society, 1980, 102(19): 6027-6036. [4] Forshey P A, Kuwana T. Electrochemistry of oxygen reduction. 4. Oxygen to water conversion by iron(II)(tetrakis(N-methyl-4-pyridyl) porphyrin) via hydrogen peroxide[J]. Inorganic Chemistry, 1983, 22(5): 699-707. [5] Shigehara K, Anson F C. Electrocatalytic activity of three iron porphyrins in the reduction of dioxygen and hydrogen peroxide at graphite cathodes[J]. The Journal of Physical Chemistry, 1982, 86(14): 2776-2783. [6] Van Veen J, Colijn H. Oxygen reduction on transition-metal porphyrins in acid electrolyte II. Stability[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1981, 85(9): 700-704. [7] Chan R J, Su Y O, Kuwana T. Electrocatalysis of oxygen reduction. 5. Oxygen to hydrogen peroxide conversion by cobalt(II) tetrakis(N-methyl-4-pyridyl) porphyrin[J]. Inorganic Chemistry, 1985, 24(23): 3777-3784. [8] Jones R D, Summerville D A, Basolo F. Manganese(II) porphyrin oxygen carriers. Equilibrium constants for the reaction of dioxygen with para-substituted meso-tetraphenylporphinatomanganese(II) complexes[J]. Journal of the American Chemical Society, 1978, 100(14): 4416-4424. [9] Van Veen J, Van Baar J, Kroese C, et al. Oxygen reduction on transition-metal porphyrins in acid electrolyte I. Activity[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1981, 85(9): 693-700. [10] Durand Jr R R, Bencosme C S, Collman J P, et al. Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins[J]. Journal of the American Chemical Society, 1983, 105(9): 2710-2718. [11] Collman J P, Gagne R R, Reed C, et al. Picket fence porphyrins. Synthetic models for oxygen binding hemoproteins[J]. Journal of the American Chemical Society, 1975, 97(6): 1427-1439. [12] Collman J P, Kim K. Electrocatalytic four-electron reduction of dioxygen by iridium porphyrins adsorbed on graphite[J]. Journal of the American Chemical Society, 1986, 108(24): 7847-7849. [13] Vasudevan P, Mann N, Tyagi S. Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction[J]. Transition Metal Chemistry, 1990, 15(2): 81-90. [14] Van den Brink F, Barendrecht E,Visscher W. The cathodic reduction of oxygen: A review with emphasis on macrocyclic organic metal complexes as electrocatalysts[J]. Recueil des Travaux Chimiques des Pays-Bas, 1980, 99(9): 253-262. [15] van Wingerden B, van Veen J R, Mensch C T. An extended X-ray absorption fine structure study of heat-treated cobalt porphyrin catalysts supported on active carbon[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1988, 84(1): 65-74. [16] keda O, Fukuda H,Tamura H. The effect of heat treatment on group VIIIB porphyrins as electrocatalysts in the cathodic reduction of oxygen[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1986, 82(5): 1561-1573. [17] Gupta S, Tryk D, Bae I, et al. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction[J]. Journal of Applied Electrochemistry, 1989, 19(1): 19-27. [18] Savy M, Coowar F, Riga J, et al. Investigation of O2 reduction in alkaline media on macrocyclic chelates impregnated on different supports: Influence of the heat treatment on stability and activity[J]. Journal of Applied Electrochemistry, 1990, 20(2): 260-268. [19] Lefèvre M, Proietti E, Jaouen F, et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. science, 2009, 324(5923): 71-74. [20] Jaouen F, Proietti E, Lefèvre M, et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells[J]. Energy & Environmental Science, 2011, 4(1): 114-130. [21] Jaouen F, Herranz J, Lefevre M, et al. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2009, 1(8): 1623-1639. [22] Yang S B, Feng X L, Wang X C, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie International Edition, 2011, 50(23): 5339-5343. [23] Lefèvre M, Dodelet J, Bertrand P. Molecular oxygen reduction in PEM fuel cells: Evidence for the simultaneous presence of two active sites in Fe-based catalysts[J]. The Journal of Physical Chemistry B, 2002, 106(34): 8705-8713. [24] Li W M, Wu J, Higgins D C, et al. Determination of iron active sites in pyrolyzed iron-based catalysts for the oxygen reduction reaction[J]. ACS Catalysis, 2012, 2(12): 2761-2768. [25] Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3): 1321-1326. [26] Yang L J, Jiang S J, Zhao Y, et al. Boron‐doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition, 2011, 50(31): 7132-7135. [27] Yang Z, Yao Z, Li G F, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2011, 6(1): 205-211. [28] Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society, 2012, 134(39): 16127-16130. [29] Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764. [30] Wang J, Wang G X, Miao S, et al. Synthesis of Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon with single-source molecular precursor for the oxygen reduction reaction[J]. Carbon, 2014, 75: 381-389. [31] Zhong G, Wang H, Yu H, et al. A novel carbon-encapsulated cobalt-tungsten carbide as electrocatalyst for oxygen reduction reaction in alkaline media[J]. Fuel Cells, 2013, 13(3): 387-391. [32] Hu Y, Jensen J O, Zhang W, et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angewandte Chemie International Edition, 2014, 53(14): 3675-3679. [33] Xiao M L, Zhu J B, Feng L G, et al. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions[J]. Advanced Materials, 2015, 27(15): 2521-2527. [34] Zhu J B, Xiao M L, Liu C P, et al. Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: Guidance for building highly efficient oxygen reduction electrocatalysts[J]. Journal of Materials Chemistry A, 2015, 3(43): 21451-21459. [35] Deng J, Yu L, Deng D H, et al. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls[J]. Journal of Materials Chemistry A, 2013, 1(47): 14868-14873. [36] Deng D H, Yu L, Chen X Q, et al. Iron encapsulated within pod‐like carbon nanotubes for oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013, 52(1): 371-375. [37] Wu Z S, Yang S, Sun Y, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134(22): 9082-9085. [38] Fan X J, Peng Z W, Ye R Q, et al. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions[J]. ACS Nano, 2015, 9(7): 7407-7418. [39] Flahaut E, Agnoli F, Sloan J, et al. CCVD synthesis and characterization of cobalt-encapsulated nanoparticles[J]. Chemistry of Materials, 2002, 14(6): 2553-2558. [40] Cui X J, Ren P J, Deng D H, et al. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation[J]. Energy & Environmental Science, 2016, 9(1): 123-129. [41] Deng J, Ren P J, Deng D H, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(7): 2100-2104. [42] Hu Y, Jensen J O, Zhang W, et al. Fe3C-based oxygen reduction catalysts: Synthesis, hollow spherical structures and applications in fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(4): 1752-1760. [43] Yang W X, Liu X J, Yue X Y, et al. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction[J]. Journal of the American Chemical Society, 2015, 137(4): 1436-1439. [44] Li J S, Li S L, Tang Y J, et al. Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: Efficient bifunctional electrocatalysts for ORR and OER[J]. Chemical Communications, 2015, 51(13): 2710-2713. [45] Hou Y, Huang T Z, Wen Z H, et al. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions[J]. Advanced Energy Materials, 2014, 4(11): No. 1400337. [46] Chen K Y, Huang X B, Wan C Y, et al. Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes[J]. Chemical Communications, 2015, 51(37): 7891-7894. [47] Chung H T, Won J H, Zelenay P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction[J]. Nature Communications, 2013, 4: No. 1922. [48] Zhong G Y, Wang H J, Yu H, et al. Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media[J]. Journal of Power Sources, 2015, 286: 495-503. [49] Li J Y, Wang J, Gao D F, et al. Silicon carbide-supported iron nanoparticles encapsulated in nitrogen-doped carbon for oxygen reduction reaction[J]. Catalysis Science & Technology, 2016, DOI: 10.1039/C5CY01539A. [50] Ren G Y, Lu X Y, Li Y, et al. Porous core-shell Fe3C embedded N-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 4118-4125. [51] Barman B K, Nanda K K. Prussian blue as a single precursor for synthesis of Fe/Fe3C encapsulated N-doped graphitic nanostructures as bi-functional catalysts[J]. Green Chemistry, 2016, 18(2): 427-432. [52] Liu Y Y, Jiang H L, Zhu Y H, et al. Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions[J]. Journal of Materials Chemistry A, 2016, 4(5): 1694-1701.
文章导航

/