欢迎访问《电化学(中英文)》期刊官方网站,今天是
光电化学及新型太阳能电池近期研究专辑(厦门大学林昌健教授&中国科学院化学研究所李永舫院士主编)

基于WOx/PEDOT:PSS复合空穴传输层的高效稳定平面异质结钙钛矿太阳电池

  • 乔文远 ,
  • 郭强 ,
  • 李聪 ,
  • 马爽 ,
  • 王福芝 ,
  • 戴松元 ,
  • 谭占鳌
展开
  • 华北电力大学新型薄膜太阳电池北京市重点实验室, 北京 102206

收稿日期: 2016-01-26

  修回日期: 2016-03-01

  网络出版日期: 2016-03-11

基金资助

江苏省科技支撑项目(BE2014147-4)、北京市科技计划项目(Z141100003314003)资助

WOx/PEDOT:PSS double-layered Hole-transport Layers for Efficient and Stable Planar Heterojunction Perovskite Solar Cells

  • QIAO Wen-yuan ,
  • GUO Qiang ,
  • LI Cong ,
  • MA Shuang ,
  • WANG Fu-zhi ,
  • DAI Song-yuan ,
  • TAN Zhan-ao
Expand
  • Beijing Key Laboratory of Novel Thin Film Solar Cells, School of Renewable Energy, North China ElectricPower University,Beijing 102206, China

Received date: 2016-01-26

  Revised date: 2016-03-01

  Online published: 2016-03-11

摘要

在基于钙钛矿/富勒烯平面异质结的钙钛矿太阳电池中,PEDOT:PSS是最常使用的空穴传输材料. 但PEDOT:PSS呈酸性,会腐蚀金属氧化物透明电极,使器件的电极界面稳定性欠佳. 本文将高功函的氧化钨(WOx)插入到PEDOT:PSS和FTO之间,形成WOx/PEDOT:PSS复合空穴传输层,这样既可以避免PEDOT:PSS与FTO直接接触,提高器件的稳定性,又可以进一步降低电极界面的接触势垒,从而提升器件的性能. 作者研究了复合传输层对透光率、钙钛矿形貌、钙钛矿结晶、光伏性能及器件稳定性的影响. 基于 WOx/PEDOT:PSS复合空穴传输层的电池效率可以达到12.96%,比单纯的PEDOT:PSS的电池效率(10.56%)提升了22.7%,同时器件的稳定性也得到大幅改善.

本文引用格式

乔文远 , 郭强 , 李聪 , 马爽 , 王福芝 , 戴松元 , 谭占鳌 . 基于WOx/PEDOT:PSS复合空穴传输层的高效稳定平面异质结钙钛矿太阳电池[J]. 电化学, 2016 , 22(4) : 382 -389 . DOI: 10.13208/j.electrochem.160141

Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a commonly used hole-transport material in the perovskite solar cells (PerSCs) structure of perovskite/fullerene planer heterojunction, but it also has a negative effect on the stability of device because of its acidity which will corrode metal oxide transparent electrodes. In this work, a WOx hole-transport layer with high work function was inserted into the PEDOT: PSS and FTO to enhance the stability and photovoltaic performance. The inserted WOx layer not only can avoid direct contact between PEDOT:PSS and FTO, but also can further reduce the contact barrier between the electrode interface. We studied the effect of WOx/PEDOT:PSS double-layered hole transport layers on the optical transmittance, the morphology and crystals of perovskite, the photovoltaic performance and the stability of the devices. The power conversion efficiency (PCE) of PerSCs can be improved from 10.56% (with PEDOT:PSS layer) to 12.96% with WOx/PEDOT:PSS double-layered hole transport layers, and the stability of the device has also been greatly improved.

参考文献

[1]    Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175 mu m in solution-grown CH3NH3PbI3 single crystals[J]. Science. 2015,347(6225):967-70.

[2]    Xing G C, Mathews N, Sun S Y, et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3[J]. Science. 2013,342(6156):344-7.

[3]    Hodes G. Perovskite-Based Solar Cells[J]. Science. 2013,342(6156):317-8.

[4]    Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. J Am Chem Soc. 2009,131(17):6050-+.

[5]    Smolev S, Ku Z Y, Brueck S R J, et al. Resonant coupling to a dipole absorber inside a metamaterial: Anticrossing of the negative index response[J]. J Vac Sci Technol B. 2010,28(6): 1071-1023.

[6]    Niu G D, Guo X D, Wang L D. Review of recent progress in chemical stability of perovskite solar cells[J]. J Mater Chem A. 2015,3(17):8970-80.

[7]    Tiep N H, Ku Z, Fan H J. Recent Advances in Improving the Stability of Perovskite Solar Cells[J]. Adv Energy Mater. 2015:1501420.

[8]    Mei A Y, Li X, Liu L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science. 2014,345(6194):295-8.

[9]    Chen W, Wu Y Z, Yue Y F, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science. 2015,350(6263):944-8.

[10] You J, Meng L, Song T-B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nature Nanotechnology. 2015,11(1):75-81.

[11]  Norrman K, Madsen M V, Gevorgyan S A, et al. Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell[J]. J Am Chem Soc. 2010,132(47):16883-92.

[12] Kim Y H, Lee S H, Noh J, et al. Performance and stability of electrolu minescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and polyelectrolytes[J]. Thin Solid Films. 2006,510(1-2):305-10.

[13] Ionescu-Zanetti C, Mechler A, Carter S A, et al. Semiconductive polymer blends: Correlating structure with transport properties at the nanoscale (vol 16, pg 385, 2004)[J]. Adv Mater. 2004,16(7):579-.

[14] Shrotriya V, Li G, Yao Y, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells[J]. Appl Phys Lett. 2006,88(7):073508.

[15] Jung G H, Lim K G, Lee T W, et al. Morphological and electrical effect of an ultrathin iridium oxide hole extraction layer on P3HT:PCBM bulk-heterojunction solar cells[J]. Sol Energ Mater Sol C. 2011,95(4):1146-50.

[16] Jeon N J, Lee J, Noh J H, et al. Efficient Inorganic Organic Hybrid Perovskite Solar Cells Based on Pyrene Aryla mine Derivatives as Hole-Transporting Materials[J]. J Am Chem Soc. 2013,135(51):19087-90.

[17] Ryu S Y, Noh J H, Hwang B H, et al. Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode[J]. Appl Phys Lett. 2008,92(2):023306.

[18] Li J Z, Yahiro M, Ishida K, et al. Enhanced performance of organic light emitting device by insertion of conducting/insulating WO3 anodic buffer layer[J]. Synthetic Met. 2005,151(2):141-6.

[19] Tan Z A, Li L J, Cui C H, et al. Solution-Processed Tungsten Oxide as an Effective Anode Buffer Layer for High-Performance Polymer Solar Cells[J]. J Phys Chem C. 2012,116(35):18626-32.

[20] Im J H, Jang I H, Pellet N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nature Nanotechnology. 2014,9(11):927-32.

[21] Choi G W, Lee K Y, Kim N H, et al. CMP characteristics and optical property of ITO thin film by using silica slurry with a variety of process parameters[J]. Microelectron Eng. 2006,83(11-12):2213-7.

[22] Lee K T, Lu S Y. Porous FTO thin layers created with a facile one-step Sn4+-based anodic deposition process and their potential applications in ion sensing[J]. J Mater Chem A. 2012,22(32):16259-68.

[23] Choi H, Mai C K, Kim H B, et al. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells[J]. Nat Commun. 2015,6:7348-6.

[24] Raga S R, Jung M C, Lee M V, et al. Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells[J]. Chem Mater. 2015,27(5):1597-603.

[25] Ye S Y, Sun W H, Li Y L, et al. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%[J]. Nano Lett. 2015,15(6):3723-8.

[26] Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature. 2013,499(7458):316-+.

[27] Wang F Z(王福芝), Tan Z A(谭占鳌), Dai S Y(戴松元), et al. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells [J]. Acta Physica Sinica(物理学报). 2015,64(3):038401.

[28] He Y J, Zhao G J, Peng B, et al. High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C-70 Bisadduct[J]. Adv Funct Mater. 2010,20(19):3383-9.

文章导航

/