[1] Anxolabéhère-Mallart E, Costentin C, Fournier M, et al. Boron-capped tris(glyoximato) cobalt clathrochelate as a precursor for the electrodeposition of nanoparticles catalyzing H2 evolution in water[J]. Journal of the American Chemical Society, 2012, 134(14): 6104-6107.
[2] Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 2001, 414(6861): 332-337.
[3] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
[4] Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44: 5148-5180.
[5] Rostrup-Nielsen J R, Nielsen R. Fuels and energy for the future: The role of catalysis[J]. Catalysis Reviews, 2004, 46(3/4): 247-270.
[6] Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature, 2002, 418(6901): 964-967.
[7] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37.
[8] Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260.
[9] Stephens I E L, Chorkendorff I. Minimizing the use of Platinum in hydrogen-evolving electrodes[J]. Angewandte Chemie International Edition, 2011, 50(7): 1476-1477.
[10] Cheng L, Huang W J, Gong Q F, et al. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition 2014, 53(30): 7860-7863.
[11] Jiang P, Liu Q, Liang Y H, et al. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase[J]. Angewandte Chemie International Edition, 2014, 53(47): 12855-12859.
[12] Morales-Guio C G, Stern L-A, Hu X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical Society Reviews, 2014, 43(18): 6555-6569.
[13] Bockris J O’M, Potter E C. The mechanism of the cathodic hydrogen evolution reaction[J]. Journal of the Electrochemical Society, 1952, 99(4): 169-186.
[14] Sheng W C, Gasteiger H A, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes[J]. Journal of the Electrochemical Society, 2010, 157(11): B1529-B1536.
[15] Hinnemann B, Moses P G, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15): 5308-5309.
[16] Choi W I, Wood B C, Schwegler E, et al. Site-dependent free energy barrier for proton reduction on MoS2 edges[J]. The Journal of Physical Chemistry C, 2013, 117(42): 21772-21777.
[17] Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution[J]. Journal of the Electrochemical Society, 2005, 152(3): J23-J26.
[18] Greeley J, Jaramillo T F, Bonde J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nature Materials, 2006, 5(11): 909-913.
[19] Callejas J F, Read C G, Popczun E J, et al. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP[J]. Chemistry of Materials, 2015, 27(10): 3769-3774.
[20] Zhang H C, Li Y J, Zhang G X, et al. A metallic CoS2 nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3(12): 6306-6310.
[21] Chen W F, Muckerman J T, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts[J]. Chemical Communications, 2013, 49(79): 8896-8909.
[22] Kitchin J R, Nørskov J K, Barteau M A, et al. Trends in the chemical properties of early transition metal carbide surfaces: A density functional study[J]. Catalysis Today, 2005, 105(1): 66-73.
[23] Nørskov J K, Abild-Pedersen F, Studt F, et al. Density functional theory in surface chemistry and catalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): 937-943.
[24] Vrubel H, Hu X L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions[J]. Angewandte Chemie International Edition, 2012, 51(51): 12703-12706.
[25] Liao L, Wang S N, Xiao J J, et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction[J]. Energy &Environmental Science 2014, 7(1): 387-392.
[26] Ge C J, Jiang P, Cui W, et al. Shape-controllable synthesis of Mo2C nanostructures as hydrogen evolution reaction electrocatalysts with high activity[J]. Electrochimica Acta, 2014, 134(10): 182-186.
[27] Wu H B, Xia B Y, Yu L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature Communications, 2015, 6: 6512.
[28] Tang C Y, Sun A K, Xu Y S, et al. High specific surface area Mo2C nanoparticles as an efficient electrocatalyst for hydrogen evolution[J]. Journal of Power Sources, 2015, 296(20): 18-22.
[29] Chen W F, Wang C H, Sasaki K, et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production[J]. Energy & Environmental Science, 2013, 6(3): 943-951.
[30] Zhang K, Zhao Y, Fu D Y, et al. Molybdenum carbide nanocrystal embedded N-doped carbon nanotubes as electrocatalysts for hydrogen generation[J]. Journal of Materials Chemistry A, 2015, 3(11): 5783-5788.
[31] He C Y, Tao J Z. Synthesis of nanostructured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts[J]. Chemical Communications, 2015, 51(39): 8323-8325.
[32] Wan C, Regmi Y N, Leonard B M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 53(25): 6407-6410.
[33] Pan L F, Li Y H, Yang S, et al. Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction[J]. Chemical Communications, 2014, 50(86): 13135-13137.
[34] Youn D H, Han S, Kim J Y, et al. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support[J]. ACS Nano, 2014, 8(5): 5164-5173.
[35] Chen W F, Iyer S, Iyer S, et al. Biomass-derived electrocatalytic composites for hydrogen evolution[J]. Energy & Environmental Science, 2013, 6(6): 1818-1826.
[36] Cui W, Cheng N Y, Liu Q, et al. Mo2C nanoparticles decorated graphitic carbon sheets: Biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen Generation[J]. ACS Catalysis, 2014, 4(8): 2658-2661.
[37] Fan M H, Chen H, Wu Y Y, et al. Growth of molybdenum carbide micro-islands on carbon cloth toward binder-free cathodes for efficient hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(31): 16320-16326.
[38] Ma L, Ting L R L, Molinari V, et al. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route[J]. Journal of Materials Chemistry A, 2015, 3(16): 8361-8368.
[39]Wan C, Leonard B M. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction[J]. Chemistry of Materials, 2015, 27(12): 4281-4288.
[40]Xiao P, Ge X M, Wang H B, et al. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution[J]. Advanced Functional Materials, 2015, 25(10): 1520-1526.
[41] Prins R, Bussell M E. Metal phosphides: Preparation, characterization and catalytic reactivity[J]. Catalysis Letters, 2012, 142(12): 1413-1436.
[42] Chen X B, Wang D Z, Wang Z P, et al. Molybdenum phosphide: A new highly efficient catalyst for the electrochemical hydrogen evolution reaction[J]. Chemical Communions, 2014, 50(79): 11683-11685.
[43] Xiao P, Sk M A, Thia L, et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Energy& Environmental Science, 2014, 7(8): 2624-2629.
[44] Xing Z, Liu Q, Asiri A M, et al. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water[J]. Advanced Materials, 2014, 26(32): 5702-5707.
[45] Cui W, Liu Q, Xing Z C, et al. MoP nanosheets supported on biomass-derived carbon flake: One-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2015, 164: 144-150.
[46] Kibsgaard J, Jaramillo T F. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 53(52): 14433-14437.
[47] McEnaney J M, Crompton J C, Callejas J F, et al. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution[J]. Chemistry of Materials, 2014, 26(16): 4826-4831.
[48] Ham D J, Lee J S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells[J]. Energies, 2009, 2(4): 873-899.
[49] Xie J F, Li S, Zhang X D, et al. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution[J]. Chemical Science, 2014, 5: 4615-4620.
[50] Chen W F, Sasaki K, Ma C, et al. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets[J]. Angewandte Chemie International Edition, 2012, 51(25): 6131-6135.
[51] Cao B F, Veith G M, Neuefeind J C, et al. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(51): 19186-19192.
[52] Zhao Y, Kamiya K, Hashimoto K, et al. In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst[J]. Journal of the American Chemical Society, 2015, 137(1): 110-113.
[53] Li Y G, Wang H L, Xie L M, et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19): 7296-7299.
[54] Nikam R D, Lu A Y, Sonawane P A, et al. Three-dimensional heterostructures of MoS2 nanosheets on conducting MoO2 as an efficient electrocatalyst to enhance hydrogen evolution reaction[J]. ACS Applied Materials &Interfaces, 2015, 7(41): 23328-23335.
[55] Kibsgaard J, Chen Z B, Reinecke B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012, 11(11): 963-969.
[56] Guo Y X, Zhang X Y, Zhang X P, et al. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3(31): 15927-15934.
[57] Shi S P, Gao D Q, Xia B R, et al. Enhanced hydrogen evolution catalysis in MoS2 nanosheets by incorporation of a metal phase[J]. Journal of Materials Chemistry A, 2015, 3(48): 24414-24421.
[58] Deng Z H, Li L, Ding W, et al. Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction[J]. Chemical Communications, 2015, 51(10): 1893-1896.
[59] Zhao X, Zhu H, Yang, X R. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution[J]. Nanoscale, 2014, 6(18): 10680-10685.
[60] Wang T Y, Zhuo J Q, Du K Z, et al. Electrochemically fabricated polypyrrole and MoSx copolymer films as a highly active hydrogen evolution electrocatalyst[J]. Advanced Materials, 2014, 26(22): 3761-3766.
[61] Nikam R D, Lu A Y, Sonawane P A, et al. Three-dimensional heterostructures of MoS2 nanosheets on conducting MoO2 as an efficient electrocatalyst to enhance hydrogen evolution reaction[J]. ACS Applied Materials &Interfaces, 2015, 7(41): 23328-23335.
[62] Yang L J, Zhou W J, Hou D M, et al. Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction[J]. Nanoscale, 2015, 7(12): 5203-5208.
[63] Smith A J, Chang Y H, Raidongia K, et al. Molybdenum sulfide supported on crumpled graphene balls for electrocatalytic hydrogen production[J]. Advanced Energy Materials, 2014, 4(14): 1400398.
[64] Tan Y W, Liu P, Chen L Y, et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production[J]. Advanced Materials, 2014, 26(47): 8023-8028.
[65] Kumar T N, Chandrasekaran N, Phani K L. Structural and electronic modification of MoS2 nanosheets using S-doped carbon for efficient electrocatalysis of the hydrogen evolution reaction[J]. Chemical Communications, 2015, 51(24): 5052-5055.
[66] Ren X P, Ma Q, Fan H B, et al. A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction[J]. Chemical Communications, 2015, 51(88): 15997-16000.
[67] Miao J M, Xiao F X, Yang H B, et al. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte[J]. Science Advances, 2015, 1(7): e1500259.
[68] Gao M R, Chan M K Y, Sun Y G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production[J]. Nature Communications, 2015, 6:74693.
[69] Lukowski M A, Daniel A S, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28): 10274-10277.
[70] Seo B, Jung G Y, Sa Y J, et al. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction[J]. ACS Nano, 2015, 9(4): 3728-3739.