压力对带有pH值可调聚电解质刷的仿生纳米孔中离子选择性的影响
收稿日期: 2016-01-04
修回日期: 2016-02-22
网络出版日期: 2016-03-07
基金资助
国家自然科学基金项目(No. 61271230, No. 61472190)资助
Effect of Pressure on Ion Selectivity in Biomimetic Nanopores with pH-Tunable Polyelectrolyte Brushes
Received date: 2016-01-04
Revised date: 2016-02-22
Online published: 2016-03-07
具有pH值可调聚电解质(Polyelectrolyte,PE)刷的合成纳米孔的仿生离子通道在纳米尺度下离子、流体和生物粒子的主动运输控制方面具有重大应用潜力. 离子选择性是纳流体设备中离子传输的重要现象,具有很大的现实意义和实用价值. 本文提出了施加压力控制纳米孔中离子选择度的方法,综合研究了溶液pH值、浓度、外加电压和压力对离子选择度的影响. 仿真结果表明,离子选择度对压力的刺激是敏感的,且不像电压对离子选择度的影响会受到溶液pH值和浓度的制约,且方向不定,速度不可控;压力对离子选择度的影响不受溶液性质制约,并且灵活可控. 该结果对设计带pH值可调聚电解质刷的纳米孔有重要的启发作用.
关键词: pH值可调聚电解质层; 合成纳米孔; 离子传输; 离子选择性
单惠霞 , 曾振平 , 叶礼贤 , 束峰 . 压力对带有pH值可调聚电解质刷的仿生纳米孔中离子选择性的影响[J]. 电化学, 2017 , 23(1) : 64 -71 . DOI: 10.13208/j.electrochem.160104
Biomimetic ionic channels of synthetic nanopores functionalized with pH-tunable polyelectrolyte (PE) brushes have significant application potentials for active transport control of ions, fluids, and bioparticles on the nanoscale. Ion selectivity is an important phenomenon of ion transport in nanofluidic devices, which has great theoretical significance and practical values. We propose a pressure control scheme to control the ion selectivity in biomimetic nano-systems with pH-tunable PE brushes. Effects of the solution properties (i.e., pH and background salt concentration), the applied voltage and pressure on ion selectivity are comprehensively investigated. The results show that ion selectivity is sensitive to pressure. Unlike the influence of voltage on ion selectivity which is subject to pH and background salt concentration with uncertain directions and uncontrollable speeds, the influence of pressure on ion selectivity is not restricted by the properties of the solution, and has fixed directions and flexible and controllable speeds. The obtained result is a good inspiration for the design of synthetic nanopores functionalized with pH-tunable PE brushes.
[1] Xu H, Lei J. Learning from nature: building bio-inspired smart nanochannels[J]. Acs Nano, 2009, 3(11): 3339-3342.
[2] Plesa C, Kowalczyk S W, Zinsmeester R, et al. Fast translocation of proteins through solid state nanopores[J]. Nano Letters, 2013, 13(2): 658-663.
[3] Pang P, He J, Park J H, et al. Origin of giant ionic currents in carbon nanotube channels[J]. Acs Nano, 2011, 5(9): 7277-7283.
[4] Vlassiouk I, Smirnov S, Siwy Z. Ionic selectivity of single nanochannels[J]. Nano Letters, 2008, 8(7): 1978-1985.
[5] Ai Y, Zhang M, Sang W J, et al. Effects of electroosmotic flow on ionic current rectification in conical nanopores[J]. Journal of Physical Chemistry C, 2010, 114(9): 3883-3890.
[6] Dzmitry H, Perry J M, Jacobson S C, et al. Propagating concentration polarization and ionic current rectification in a nanochannel-nanofunnel device[J]. Analytical Chemistry, 2011, 84(1): 267-274.
[7] Jung-Yeul J, Punarvasu J, Leo P, et al. Electromigration current rectification in a cylindrical nanopore due to asymmetric concentration polarization[J]. Analytical Chemistry, 2009, 81(8): 3128-3133.
[8] Ying-Chih W, Stevens A L, Jongyoon H. Million-fold preconcentration of proteins and peptides by nanofluidic filter[J]. Analytical Chemistry, 2005, 77(14): 4293-4299.
[9] Adrien P, Clément N, Anne-Marie H G, et al. Electropreconcentration with charge-selective nanochannels[J]. Analytical Chemistry, 2008, 80(24): 9542-9550.
[10] Rhokyun K, Sung Jae K, Jongyoon H. Continuous-flow biomolecule and cell concentrator by ion concentration polarization[J]. Analytical Chemistry, 2011, 83(19): 7348-7355.
[11] Yeh L H, Zhang M, Qian S, et al. Ion concentration polarization in polyelectrolyte-modified nanopores[J]. Journal of Physical Chemistry C, 2012, 116(15): 8672-8677.
[12] Cheng L J, Guo L J. Rectified Ion transport through concentration gradient in homogeneous silica nanochannels[J]. Nano Letters, 2007, 7(10): 3165-3171.
[13] Kubeil C, Bund A. The role of nanopore geometry for the rectification of ionic currents[J]. J.phys.chem.c, 2011, 115(16): 7866-7873.
[14] Zhang B, Ai Y, Liu J, et al. Polarization effect of a dielectric membrane on the ionic current rectification in a conical nanopore[J]. Journal of Physical Chemistry C, 2011, 115(50): 24951-24959.
[15] Singh K P, Kumar M. Effect of nanochannel diameter and debye length on ion current rectification in a fluidic bipolar diode[J]. Journal of Physical Chemistry C, 2011, 115(46): 22917-22924.
[16] Heyden F H J V D, Bonthuis D J, Stein D, et al. Power generation by pressure-driven transport of ions in nanofluidic channels[J]. Nano Letters, 2007, 7(4): 1022-1025.
[17] Yeh L H, Xue S, Sang W J, et al. Field effect control of surface charge property and electroosmotic flow in nanofluidics[J]. J.Phys.Chem.C, 2012, 116(6): 4209-4216.
[18] Chih-Chang C, Yutaka K, Kyojiro M, et al. Numerical simulation of proton distribution with electric double layer in extended nanospaces[J]. Analytical Chemistry, 2013, 85(9): 4468-4474.
[19] Wen-Jie L, Holden D A, White H S. Pressure-dependent ion current rectification in conical-shaped glass nanopores[J]. Journal of the American Chemical Society, 2011, 133(34): 13300-13303.
[20] Li-Hsien Y, Mingkan Z, Shizhi Q. Ion transport in a pH-regulated nanopore[J]. Analytical Chemistry, 2013, 85(15): 7527-7534.
[21] Antonio A, Patricio R, Elena G G, et al. A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel.[J]. Journal of Physical Chemistry B, 2006, 110(110):21205-9.
[22] Wanunu M, Meller A. Chemically modified solid-state nanopores.[J]. Nano Letters, 2007, 7(6):1580-5.
[23] Li-Hsien Y, Mingkan Z, Shizhi Q, et al. Ion concentration polarization in polyelectrolyte-modified nanopores[J]. Journal of Physical Chemistry C, 2012, 116(15): 8672-8677.
[24] Zhenping Zeng, Ye Ai, Shizhi Qian. PH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.[J]. Physical Chemistry Chemical Physics, 2014, 16(6):2465-2474.
[25] Wen-Jie L, Holden D A, White H S. Pressure-dependent ion current rectification in conical-shaped glass nanopores.[J]. Journal of the American Chemical Society, 2011, 133(34):13300-3.
[26] Orit P, Mario T, Martin K, et al. Morphology control of hairy nanopores[J]. Acs Nano, 2011, 5(6): 4737-4747.
[27] Mario T, Yitzhak R, Igal S. Ion transport and molecular organization are coupled in polyelectrolyte-modified nanopores[J]. Journal of the American Chemical Society, 2011, 133(44): 17753-17763.
[28] Mario T, Yitzhak R, Igal S. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes[J]. Acs Nano, 2013, 7(10): 9085-9097.
[29] Ralf Z, Dirk K, Martin K, et al. Electrokinetics of a poly(N-isopropylacrylamid-co-carboxyacrylamid) soft thin film: eviden ce of diffuse segment distribution in the swollen state[J]. Langmuir, 2010, 26(26): 18169-18181.
[30] Vlassiouk I, Smirnov S, Siwy Z. Ionic selectivity of single nanochannels[J]. Nano Letters, 2008, 8(7): 1978-1985.
[31] Basit Y, Mubarak A, Reinhard N, et al. Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes[J]. Journal of the American Chemical Society, 2009, 131(6): 2070-2071.
[32] Ali M, Ramirez P, Mafé S, et al. A pH-tunable nanofluidic diode with a broad range of rectifying properties[J]. Acs Nano, 2009, 3(3): 603-608.
/
〈 |
|
〉 |