欢迎访问《电化学(中英文)》期刊官方网站,今天是
燃料电池电化学催化与催化剂近期研究专辑(重庆大学 魏子栋教授主编)

质子交换膜燃料电池Pt/C阴极氧还原动力学模拟

  • 李 赏 ,
  • 周 芬 ,
  • 陈 磊 ,
  • 潘 牧
展开
  • 武汉理工大学材料复合新技术国家重点实验室,燃料电池湖北省重点实验室,武汉 430070

收稿日期: 2016-01-05

  修回日期: 2016-02-19

  网络出版日期: 2016-04-28

基金资助

国家自然科学基金项目(21476178),博士点基金优先发展领域项目(20130143130001)资助

Dynamic Simulation of Oxygen Reduction Reaction in Pt/C Electrode for Proton Exchange Membrane Fuel Cells

  • LI Shang ,
  • ZHOU Fen ,
  • CHEN Lei ,
  • PAN Mu
Expand
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Progressing, Hubei Fuel Cell Key Laboratory, Wuhan University of Technology, Wuhan 430070,China

Received date: 2016-01-05

  Revised date: 2016-02-19

  Online published: 2016-04-28

摘要

质子交换膜燃料电池的商业化应用迫切要求降低其Pt载量. 本文通过Pt/C氧还原电极的动力学模型计算,研究了Pt/C电极中的氧分布、生成电流以及满足实际应用的最小Pt载量. 结果表明:燃料电池Pt/C电极,阴极产生严重浓差极化的催化层厚度为40 mm;功率密度达到1.4 W•cm-2(2.1 A•cm-2@0.67 V)的电池性能需要3 mm左右的Pt/C阴极催化层,阴极Pt载量为0.122 mg•cm-2,即可使膜电极的阴极铂用量低于0.087 g•kW-1.

本文引用格式

李 赏 , 周 芬 , 陈 磊 , 潘 牧 . 质子交换膜燃料电池Pt/C阴极氧还原动力学模拟[J]. 电化学, 2016 , 22(2) : 129 -134 . DOI: 10.13208/j.electrochem.151150

Abstract

It is an urgent need to reduce the Pt loading in electrode for practical fuel cell applications worldwide. Herein, we theoretically investigate the oxygen distribution, generated current, and minimum Pt loading of Pt/C electrode for practical applications based on kinetic model of oxygen reduction reaction. The results indicate that with increasing electrode effective thickness to 40 mm, serious concentration polarization is expected for Pt/C electrode. To generate a power density of 1.4 W•cm-2 (2.1A•cm-2 @0.67 V) for fuel cell, the cathode catalyst layer thickness in PEMFC should be as thin as 3 mm. The minimum Pt loading will reach 0.122 mg•cm-2, which can reduce the amount of Pt to 0.087 g•kW-1 in PEMFC cathode.

参考文献

[1]    Haile S M, Boysen D A, Chisholm C R I, et al. Solid acids as fuel cell electrolytes[J]. Nature, 2001, 410(6831): 910-913.

[2]    Jaffray C, Hards G A, Precious metal supply requirements, in: Vielstich W, Lamm A and Gasteiger H (Eds.), Handbook of Fuel Cells –Fundamentals, Technology and Applications[M]. Wiley, Chichester, UK, 2003, Vol. 3, Chapter 41.

[3]  Wilson M S, Gottesfeld S High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells[J]. Journal of the electrochemical Society, 1992, 139(2): L28-L30.

[4]  Wilson M S, Gottesfeld S Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J]. Journal appled electrochemistry, 1992, 22: 1-7.

[5]    Gasteiger H A, Panels J E, Yan S G Dependence of PEM fuel cell performance on catalyst loading[J]. Journal of Power Sources, 2004, 127(1-2): 162-171.

[6]   Markovic N M, The hydrogen electrode reaction and the electrooxidation of CO and H2/CO mixtures on well-characterized Pt and Ptbimetallic surfaces, in: Vielstich W, Gasteiger H, Lamm A(Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications[M]. Wiley, Chichester, UK, 2003, Vol. 2, Chapter 26.

[7]    Gasteiger H A, Gu W, Makharia R, et al., Beginning-of-life MEA performance: efficiency loss contributions, in: Vielstich W, Lamm A and Gasteiger H A (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications[M]. Wiley, Chichester, UK, 2003, Vol. 3, Chapter 46.

[8]  http://www.most.gov.cn/mostinfo/xinxifenlei/fgzc/gfxwj/gfxwj2015/201511/W020151116518899847160.doc

[9]    Debe M K Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7): 43-51.

[10]  Gong K P, Du F, Xia Z H, et al. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009, 323(5915): 760-764.

[11]  Tian Z Q, Lim S H, Poh C K, et al. A Highly Order-Structured Membrane Electrode Assembly with Vertically Aligned Carbon Nanotubes for Ultra-Low Pt Loading PEM Fuel Cells[J].  Advanced energy materials, 2011, 1(6): 1205-1214. 

[12]  Debe M K, Schmoeckel A K, Vernstrorn G D, et al. High voltage stability of nanostructured thin film catalysts for PEM fuel cells[J]. Journal of Power Sources, 2006, 161(2): 1002-1011.

[13]  Sun S, Zhang H, Pan M, Dynamic simulation of oxygen transport rates in highly ordered electrodes for proton exchange membrane fuel cells[J]. Fuel cell, 2015, 15(3): 456-462.

[14] The US Department of Energy. Energy Efficiency and Renewable Energy, http://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf, 2012.

[15]  Paulus U A, Schmidt T J, Gasteiger H A, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study[J]. Journal of electroanalytical chemistry, 2001, 495(2): 134-145.

[16] Parthasarathy A, Srinivasan S, Appleby A J, et al. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/nafion® Interface — A microelectrode investigation[J]. Journal of the electrochemical Society, 1992, 139 (9): 2530–2537.

[17] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied catalysis B: Environmental, 2005, 56: 9–35.

 

[18]  Zhang J L, Tang Y H, Song C J, et al. PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 degrees C to 120 degrees C[J]. Journal of Power Sources, 2006, 163(1): 532–537.

[19]  Song C J, Zhang J J, Electrocatalytic Oxygen Reduction Reaction, in: Zhang J J (Ed.), PEM Fuel Cell Electrocatalyts and Catalyst Layers – Fundamentals and Applications[M]. Springer, 2008.

[20]  Zha Q X (査全性),电极过程动力学导论[M],北京,科学出版社,2002, 345-377.

文章导航

/