欢迎访问《电化学(中英文)》期刊官方网站,今天是
燃料电池电化学催化与催化剂近期研究专辑(重庆大学 魏子栋教授主编)

纳米Fe(OH)3为模板的三维石墨烯类多孔碳的制备及其催化氧还原性能研究

  • 孙崇云 ,
  • 李忠芳 ,
  • 卢雪伟 ,
  • 钟西站 ,
  • 刘玉荣
展开
  • 山东理工大学 化学工程学院,淄博,255049

收稿日期: 2015-12-10

  修回日期: 2016-01-18

  网络出版日期: 2016-04-28

基金资助

国家自然科学基金(Nos. 21276148 和 21076119) 和化学工程国家重点实验室(天津大学)开放课题(No. SKL-ChE-14B01)资助

Preparation and Performance of 3D Graphene Type Porous Carbon Employing Nano Fe(OH)3 as Template for Oxygen Reduction Catalyst

  • SUN Chong-yun ,
  • LI Zhong-fang ,
  • LU Xue-wei ,
  • ZHONG Xi-zhan ,
  • LIU Yu-rong
Expand
  • School of Chemical Engineering, Shandong University of Technology,Zibo 255049, China

Received date: 2015-12-10

  Revised date: 2016-01-18

  Online published: 2016-04-28

摘要

以煤焦油沥青为碳源,纳米Fe(OH)3为模板制备了一种三维石墨烯类多孔碳材料,通过测试氧还原性能,确定了最佳制备工艺为:反应物煤沥青,纳米Fe(OH)3,KOH的质量配比为6:8:4,热解温度为800 ℃. 扫描电镜(SEM)测试结果表明,制得的产品具有明显的孔结构且分布均匀. 透射电镜(TEM)测试结果进一步表明,产品具有泡沫状的多孔结构,高分辨透射电子显微镜图像表明该产品具有多层的三维石墨烯结构. X射线衍射(XRD)数据表明,在29o位置出现的衍射峰是多层石墨烯结构,42o位置的衍射峰表明,产品具有一定程度的石墨化. 由拉曼光谱结果计算IG与I2D的比值表明产品为多层石墨烯结构. X射线光电子能谱分析(XPS)检测到的C元素含量约为88.7%,主要包含C-C键,图谱中未发现铁元素的存在,证明纳米Fe(OH)3模板已被洗净. 根据比表面积测定(BET)可知,多孔碳的比表面积为2040 m2•g-1,孔径集中分布在10~400 nm,这与TEM测试得到的结果一致. 在0.1 mol•L-1 KOH中进行催化氧还原性能测试,起始还原电位为0 V (vs. Hg/HgO),电子转移数为3.58。测试结果表明,制得的三维石墨烯类多孔碳具有良好的催化氧还原性能.

本文引用格式

孙崇云 , 李忠芳 , 卢雪伟 , 钟西站 , 刘玉荣 . 纳米Fe(OH)3为模板的三维石墨烯类多孔碳的制备及其催化氧还原性能研究[J]. 电化学, 2016 , 22(2) : 157 -163 . DOI: 10.13208/j.electrochem.151142

Abstract

The 3D graphene type porous carbon was prepared using coal tar pitch as carbon source and nano Fe(OH)3 as template. Optimal conditions for the catalytic oxygen reduction performance were determined as: the mass ratio of coal tar, nano Fe(OH)3 and KOH is 6:8:4; the pyrolysis temperature is 800 oC. SEM images show that the products have uniformly porous structure. TEM images demonstrate that the products are porous with foam shapes. HRTEM images further indicate that the products have formed several-layers 3D graphene structure, which are also supported by XRD and Raman data, and the pore size mainly distributes in 10 ~ 40 nm. XRD data show that the materials have a certain degree of graphitization. XPS spectra indicate that nano Fe(OH)3  template is washed out with no iron being detected and C element content is about 88.7% mainly comprising C—C bond. BET results demonstrate that the specific surface area is 2040 m2•g-1, the pore size distribution concentrates in 10 ~ 40 nm which is consistent with the results obtained by HRTEM. Electrochemical performances were tested in 0.1 mol•L-1 KOH, the initial reduction potential is 0 V (vs. Hg/HgO ) and the electron transfer number is 3.58. Such low-cost, good performance material is potentially useful for oxygen reduction catalyst.

参考文献

[1]     Zhu B, Huang Y Z, Fan L D, et al. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle[J]. Nano Energy, 2016, 19: 156-164.

[2]     Xu G F, Li Z F, Wang S W, et al. Planar polyphthalocyanine cobalt absorbed on carbon black as stable electrocatalysts for direct methanol fuel cell[J]. Journal of Power Sources, 2010, 195: 4731-4735.

[3]     Yue P F, Li Z F, Wang S W, et al. MnO2 nanorod catalysts for magnesiumeair fuel cells: influence of different supports[J]. International Journal of Hydrogen Energy, 2015, 40: 6809-6817.

[4]     Chen D J, Chen C, Baiyee Z M, et al. Nonstoichiometric oxides as low-cost and highly-Efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chemical Reviews, 2015, 115(18): 9869-9921.

[5]     Dong Y C, Jun S W, Yoon G, et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction[J]. Journal of the American Chemical Society, 2015, DOI: 10.1021/jacs.5b09653.

[6]     Xu S H, Li Z F, Ji Y F, et al. A novel cathode catalyst for aluminum-air fuel cells: Activity and durability of polytetraphenylporphyrin iron(II) absorbed on carbon black[J]. International Journal of Hydrogen Energy, 2014, 39: 20171-20182.

[7]     Zitolo A, Goellner V, Armil V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14: 937-942.

[8]     Liu J, Song P, Ning Z G, et al. Recent advances in heteroatom-doped metal-Free electrocatalysts for highly efficient oxygen reduction reaction[J]. Electrocatalysis, 2015, 6: 132-147.

[9]     Wei D, Wei Z D, Chen S G, et al. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angewandte Chemie International Edition, 2013, 52: 11755-11759.

[10]  Nick D, Xia S, Vankelecom I F J, et al. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2014, 2: 4085-4111.

[11]  He X J, Li X J, Wang X T, et al. Efficient preparation of porous carbons from coal tar pitch for high performance supercapacitors[J]. New Carbon Materials, 2014, 29(6): 493-502.

[12]  Dimitrios G P, Ian A K, Robert J Y, et al. Graphene/elastomer nanocomposites[J]. Carbon, 2015, 95: 460-484.

[13]  Zhang J T, Wang J, Yang J E, et al. Three-dimensional macroporous graphene foam filled with mesoporous polyaniline network for high areal capacitance[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2291-2296.

[14]  Choi J H, Kim H J, Wang M C, et al. Three-dimensional integration of graphene via swelling, shrinking, and adaptation[J]. Nano Letters, 2015, 15(7): 4525-4531.

[15]  Wang M C, Chun S G, Han R S, et al. Heterogeneous, three-dimensional texturing of graphene[J]. Nano Letters, 2015, 15(3): 1829-1835.

[16]  Dong X C, Xu H, Wang X W, et al. 3D graphene cobalt oxide electrode for high-performance supercapacitor and enzym eless glucose detection[J]. ACS Nano, 2012, 6(4): 3206-3213.

[17]  Liang H W, Wei W, Wu Z W, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reactio[J]. Journal of the American Chemical Society, 2013, 135: 16002-16005.

[18]  Wu J X(吴娟霞), Xu H(徐华), Zhang J(张锦). the Application of Raman Spectroscopy in Graphene[J]. Acta Chimica Sinica(化学学报), 2014, 72: 301-318.

[19]  Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10: 424– 428.

[20]  Dong X C, Xu H, Wang X W, et al. 3D Graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6: 3206– 3213.

[21]  Sun H, Wu L, Gao N, et al. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its   bioimaging application[J]. ACS Applied Materials Interfaces, 2013, 5(3): 1174–1179.

文章导航

/