[1] Barigelletti F, Flamigni L, Guardigli M, et al. Energy transfer in rigid Ru(II)/Os(II) dinuclear complexes with biscyclometalating bridging ligands containing a variable number of phenylene Units [J]. Inorganic Chemistry, 1996, 35(1): 136-142.
[2] Djukic J P, Sortais J B, Barloy L, et al. Cycloruthenated compounds-synthesis and applications [J]. European Journal of Inorganic Chemistry, 2009, 817-853.
[3] Wadman S H, Lutz M, Tooke D M, et al. Consequences of N,C,N'- and C,N,N'-coordination modes on electronic and photophysical properties of cyclometalated aryl ruthenium(II) complexes [J]. Inorganic Chemistry, 2009, 48(5): 1887-1900.
[4] Sui L Z, Yang, W W, Yao C J, et al. Charge delocalization of 1,4-benzenedicyclometalated ruthenium: A comparison between tris-bidentate and bis-tridentate complexes [J]. Inorganic Chemistry, 2012, 51(3): 1590−1598.
[5] Zhong Y W, Wu S H, Burkhardt S, et al. Mononuclear and dinuclear ruthenium complexes of 2,3-di-2-pyridyl-5,6-diphenylpyrazine: synthesis and spectroscopic and electrochemical studies [J]. Inorganic Chemistry, 2011, 50(2): 517–524.
[6] Yao C J, Sui L Z, Xie H Y, et al. Electronic coupling between two cyclometalated ruthenium centers bridged by 1,3,6,8-tetra(2-pyridyl)pyrene (tppyr) [J]. Inorganic Chemistry, 2010, 49(18): 8347–8350.
[7] Bruce M I. Cyclometalation reactions [J]. Angewandte Chemie International Edition, 1977, 16(2): 73-86.
[8] Wang D, Dong H, Zhang X, et al. Dicyanovinyl-unit-induced absorption enhancement of iridium(III) complexes in long-wavelength range and potential application in dye-sensitized solar cells [J]. Science China Chemistry, 2015, 58 (4): 658–665.
[9] Bomben P G, Robson K C D , Koivisto B D, et al. Cyclometalated ruthenium chromophores for the dye-sensitized solar cell [J]. Coordination Chemistry Reviews, 2012, 256(15-16), 1438–1450.
[10] Funaki T, Kusama H, Onozawa-Komatsuzaki N, et al. Near-IR sensitization of dye-sensitized solar cells using thiocyanate-free cyclometalated ruthenium(II) complexes having a pyridylquinoline ligand [J]. European Journal of Inorganic Chemistry, 2014, 1303–1311.
[11] Shao J Y, Fu N, Yang W W, et al. Cyclometalated ruthenium(II) complexes with bis(benzimidazolyl)benzene for dye-sensitized solar cells [J]. RSC Advance. 2015, 5, 90001-90009.
[12] Funaki T, Otsuka H, Onozawa-Komatsuzaki N, et al. Systematic evaluation of HOMO energy levels for efficient dye regeneration in dye-sensitized solar cells [J]. Journal of Materials Chemistry A, 2014, 2: 15945-15951.
[13] Yao C J, Nie H J, Yang W W, et al. Combined experimental and computational study of pyren-2,7-diyl-bridged diruthenium complexes with various terminal ligands [J]. Inorganic Chemistry, 2015, 54: 4688−4698.
[14] Yao C J, Zhong Y W, Yao J. Multi-center redox-active system: amine−amine electronic coupling through a cyclometalated bisruthenium segment [J]. Inorganic Chemistry, 2013, 52: 4040−4045.
[15] Gong Z L, Zhong Y W. Urea-bridged diferrocene: structural, electrochemical, and spectroelectrochemical studies [J]. Science China Chemistry, 2015, 58(9): 1444−1450.
[16] Kong D D, Xue L S, Jang R, et al. Conformational tuning of the intramolecular electronic coupling in molecular-wire biruthenium complexes bridged by biphenyl derivatives [J]. Chemistry - A European Journal, 2015, 21, 9895-9904.
[17] Zhang J, Zhang M X, Sun C F, et al. Diruthenium complexes with bridging diethynyl polyaromatic ligands: synthesis, spectroelectrochemistry, and theoretical calculations [J]. Organometallics, 2015, 34(16): 3967−3978.
[18] Zhong Y W, Yao C J, Nie H J, Electropolymerized films of vinyl-substituted polypyridine complexes: synthesis,characterization,and applications [J]. Coordination Chemistry Reviews, 2013, 257(7-8): 1357-1372.
[19] Yao C J, Zhong Y W, Yao J. Five-stage near-infrared electrochromism in electropolymerized films composed of alternating cyclometalated bisruthenium and bis-triarylamine segments [J]. Inorganic Chemistry, 2013, 52(17): 10000-10008.
[20] Nie H J, Zhong Y W. Near-infrared electrochromism in electropolymerized metallopolymeric films of a phen-1,4-diyl-bridged diruthenium complex [J]. Inorganic Chemistry, 2014, 53(20): 11316-11322.
[21] Cui B B, Zhong Y W, Yao J. Three-state near-infrared electrochromism at the molecular scale [J]. Journal of the American Chemical Society, 2015, 137(12): 4058-4061.
[22] Yao C J, Zhong Y W, Nie H J, et al. Near-IR electrochromism in electropolymerized eilms of a biscyclometalated ruthenium complex bridged by 1.2.4.5-tetra(2-pyridyl)benzene ligand [J]. Journal of the American Chemical Society, 2011, 133(51): 20720-20723.
[23] Zhong Y W. Electrochromism within transition-metal coordination complexes and polymers, chapter 6 of electrochromic materials and devices, edited by Roger J. Mortimer, David R. Rosseinsky and Paul M. S. Monk, 2015 Wiley-VCH.
[24] Cui B B, Tang J H, Yao J, et al. A molecular platform for multistate near-infrared electrochromism and Flip-Flop, Flip-Flap-Flop, and ternary memory [J]. Angewandte Chemie International Edition, 2015, 54(32): 9192-9197.
[25] Cui B B, Mao Z, Chen Y, et al. Tuning of resistive memory switching in electropolymerized metallopolymeric films [J]. Chemical Science, 2015, 6(2): 1308-1315.
[26] Cui B B, Yao C J, Yao J, et al. Electropolymerized films as a molecular platform for volatile memory devices with two near-infrared outputs and long retention time [J]. Chemical Science, 2014, 5(3): 932-941.
[27] Gong Z L, Cui B B, Yang W W, et al. Reversible multichannel detection of Cu2+ using an electropolymerized film [J]. Electrochim Acta, 2014, 130(1): 748-753.
[28] Gong Z L, Zhong Y W, Stepwise coordination followed by oxidation mechanism for the multichannel detection of Cu2+ in an aqueous environment [J]. Organometallics, 2013, 32(24): 7495-7502.
[29] Launay, J P. Electron transfer in molecular binuclear complexes and relation with electron transport through nanojunctions [J]. Coordination Chemistry Reviews, 2013, 257(9-10): 1544-1554.
[30] Fraysse S, Coudret C, Launay J P. Molecular wires built from binuclear cyclometalated complexes [J]. Journal of the American Chemical Society, 2003, 125(19): 5880-5888.
[31] Steenwinkel P, Grove D M, Veldman N, el at. Ionic 4,4¢-biphenylene-bridged bis-ruthenium complexes [Ru2(4,4'-{C6H2(CH2NMe2)2-2,6}2)(terpy)2]n+ (n = 2 and 4) and their reversible redox interconversion: a molecular switch [J]. Organometallics, 1998, 17(26): 5647-5655.
[32] Williams J A G. The coordination chemistry of dipyridylbenzene: N-deficient terpyridine or panacea for brightly luminescent metal complexes [J]. Chemical Society Reviews, 2009, 38: 1783–1801.
[33] Wenger O S. Photoswitchable mixed valence [J]. Chemical Society Reviews, 2012, 41: 3772–3779.
[34] Gagliardo M, Snelders D J M, Chase P A. Organic transformations on s-aryl organometallic complexes [J]. Angewandte Chemie International Edition, 2007, 46(45): 8558-8573.
[35] Chi Y, Chou P T. Transition-metal phosphors with cyclometalating ligands: fundamentals and applications [J]. Chemical Society Reviews, 2010, 39: 638-655.
[36] Colombo A, Dragonett C, Valor A, et al. Thiocyanate-free ruthenium(II) 2,2'-bipyridyl complexes for dye-sensitized solar cells. Polyhedron, 2014, 82: 50–56.
[37] Constable E C, Henney R P G, Raithby P R, et al. Metal-ion dependent regioselectivity in cyclometalation reactions [J]. Angewandte Chemie International Edition, 1991, 30(10): 1363–1364.
[38] Li X H, Shi Z, Wang L, et at. Chromogenic mercury ions recognition of a new ruthenium(II) complex with cyclometalated 2-(2-thienyl)pyridine in CH3CN-aqueous system [J]. Inorganic Chemistry Communicationsm, 2013, 29: 175–178.
[39] Clot O, Wolf M O, Yap G P A, et al. Synthesis and reactivity of ruthenium(II) complexes containing hemilabile phosphine–thiophene ligands [J]. Journal of the Chemical Society, Dalton Transactions, 2000, 16: 2729–2737.
[40] Moorlag C, Clot O, Wolf M O, et al. Switchable thiophene coordination in Ru(II) bipyridyl phosphinoterthiophene complexes [J]. Chemical Communication, 2002, 24: 3028-3029.
[41] Yang W W, Zhong Y W, Yoshikawa S, et al. Tuning of redox potentials by introducing a cyclometalated bond to bis-tridentate ruthenium(II) complexes bearing bis(Nmethylbenzimidazolyl) benzene or -pyridine ligands [J]. Inorganic Chemistry, 2012, 51(2): 890−899.
[42] Nagashima T, Nakabayash T, Suzuki T, et al. Tuning of metal–metal interactions in mixed-valence states of cyclometalated dinuclear ruthenium and osmium complexes bearing tetrapyridylpyrazine or -benzene [J]. Organometallics, 2014, 33(18): 4893–4904.
[43] Shao J Y, Yao J, Zhong Y W, et al. Mononuclear cyclometalated ruthenium(II) complexes of 1.2.4.5-tetrakis(N-methylbenzimidazolyl)benzene: synthesis and electrochemical and spectroscopic studies [J]. Organometallics, 2012, 31(11): 4302-4308.
[44] Yang W W, Zhong Y W. Cyclometalated ruthenium complexes of 1,2,3-triazole-containing ligands: synthesis, structural studies, and electronic properties [J]. Chinese Journal of Chemistry, 2013, 31(3): 329–338.
[45] Yang W W, Yao J, Zhong Y W, et al. Electronic coupling in a biscyclometalated ruthenium complex bridged by 3.3'.5.5'-tetrakis(1H-123-triazol-4-yl)biphenyl [J]. Organometallics 2012, 31(3): 1035-1041.
[46] Yang W W, Yao J, Zhong Y W, Redox-asymmetric bisruthenium complex bridged by a pyridin-4-yl Moiety: synthesis,characterization,and electronic coupling studies [J]. Organometallics, 2012, 31(24): 8577-8583.
[47] Gagliardo M, Dijkstra H P, Coppo P, et al. Synthesis, crystal structure, and redox and photophysical properties of novel bisphosphinoaryl RuII-terpyridine complexes [J]. Organometallics, 2004, 23 (24): 5833–5840.
[48] Dani P, Richter B, van Klink G P M, et al. Bis(ortho)-chelated bis(phosphanyl)aryl ruthenium(II) complexes containing an m1-P-monodentate or h-Bridging h1-P,h1-P' Bonded R2PCHP Arene Ligand, 1-R-3,5-(CH2PPh2)2C6H3 [R5H, Br, or, Si(n-CH2CH2C8F17)3]-Cyclometalation Reaction Intermediates and Potential Catalysts for Use in Fluorinated Biphasic Systems [J]. European Journal of Inorganic Chemistry, 2001, 2001(1), 125-131.
[49] Jia G, Lee H M, William I D, et al. Five- and six-coordinate ruthenium complexes with the tridentate orthometallated aryl bisphosphine ligand [2,6-(Ph2PCH2)2C6H3]- [J]. Journal of Organometallic Chemistry, 1997, 534, (1-2): 173-180.
[50] Zhang Y-M, Shao J Y, Yao C J, et al. Cyclometalated ruthenium(II) complexes with a bis-carbene CCC-pincer Ligand [J]. Dalton Transactions, 2012, 41(31): 9280-9282.
[51] Naziruddin A R, Huang Z-J, Lai W C, et al. Ruthenium(II) carbonyl complexes bearing CCC-pincer bis-(carbene) ligands: synthesis, structures and activities toward recycle transfer hydrogenation reactions [J]. Dalton Transactions, 2013, 42(36): 13161-13171.
[52] Li T Y, Liang X, Zhou L, et al. N-heterocyclic carbenes: versatile second cyclometalated ligands for neutral iridium(III) heteroleptic complexes [J]. Inorganic Chemistry, 2015, 54: 161–175.
[53] Chen L, Gao Z, Li Y. Immobilization of Pd(II) on MOFs as a highly active heterogeneous catalyst for Suzuki–Miyaura and Ullmann-type coupling [J]. Catalysis Today, 2015, 245:122-128.
[54] Wang Z, Turner E, Mahoney V, et al. Facile synthesis and characterization of phosphorescent Pt(N∧C∧N)X Complexes [J]. Inorganic Chemistry, 2010, 49(24): 11276-11286.
[55] Constable E C, Henney R P G, Leese T A. Cyclometalation reactions of 6-phenyl-2,2'-bipyridine; a potential C,N,N-donor analogue of 2,2': 6',2''-terpyridine. Crystal and molecular structure of dichlorobis(6-phenyl-2,2'-bipyridine)ruthenium(II) [J]. Journal of the Chemical Society, Dalton Transactions, 1990, 2: 443-449.
[56] Klein A, Rausch B, Kaiser A, el at. The cyclometalated nickel complex [(Phbpy)NiBr] (phbpy- = 2,2'-bipyridine-6-phen-2-yl)e synthesis, spectroscopic and electrochemical studies [J]. Journal of Organometallic Chemistry, 2014, 774: 86-93.
[57] Yang W W, Wang L, Zhong Y W, et al. Tridentate cyclometalated ruthenium(II) complexes of click ligand 1.3-di(1.2.3-triazol-4-yl)benzene [J]. Organometallics, 2011, 30(8): 2236-2240.
[58] Rit A, Pape T, Hepp A, et al. Supramolecular structures from polycarbene ligands and transition metal ions [J]. Organometallics, 2011, 30(2): 334-347.
[59] Vargas V C, Rubio R J, Hollis T K, et al. Efficient route to 1,3-di-N-imidazolylbenzene. A comparison of monodentate vs bidentate carbenes in Pd-catalyzed cross coupling [J]. Organic Letters, 2003, 5(25): 4847-4849.
[60] Li T Y, Liang X, Zhou L, et al. N-Heterocyclic-carbenes: versatile second cyclometalated ligands for neutral iridium(III) heteroleptic complexes [J]. Inorganic Chemistry, 2015, 54(1), 161−173.
[61] Majumdar P, Yuan X, Li S, et al. Cyclometalated Ir(III) complexes with styryl BODIPY ligands showing near IR absorption/emission: preparation, study of photophysical properties and application as photodynamic/luminescence imaging materials [J]. Journal of Materials Chemistry B, 2014, 2(19): 2838-2854.
[62] Sun J, Zhong F, Yi X, et al. Efficient enhancement of the visible-Light absorption of cyclometalated Ir(III) complexes triplet photosensitizers with bodipy and applications in photooxidation and triplet–triplet annihilation upconversion [J]. Inorganic Chemistry, 2013, 52 (11): 6299–6310.
[63] Fleetham T B, Wang Z, Li J. Exploring cyclometalated Ir complexes as donor materials for organic solar cells [J]. Inorganic Chemistry, 2013, 52(13), 7338−7343.
[64] Xu Q L, Wang C C, Li T Y, et al. Synthesis, photoluminescence, and electroluminescence of a series of iridium complexes with trifluoromethyl-substituted 2-phenylpyridine as the main ligands and tetraphenylimidodiphosphine as the ancillary ligand [J]. Inorganic Chemistry, 2013, 52: 4916–4925.
[65] Lai S W, Cheung T C, Chan M C W, et al. Luminescent mononuclear and binuclear cyclometalated palladium(II) complexes of 6-phenyl-2,2‘-bipyridines: spectroscopic and structural comparisons with platinum(II) analogues [J]. Inorganic Chemistry, 2000, 39(2): 255–262.
[66] Xu C, Li H M, Xiao Z Q, et al. Cyclometalated Pd(II) and Ir(III) 2-(4-bromophenyl)-pyridine complexes with N-heterocyclic carbenes (NHCs) and acetylacetonate (acac): synthesis, structures, luminescent properties and application in one-pot oxidation/Suzuki coupling of aryl chlorides containing hydroxymethyl [J]. Dalton Transactions, 2014, 43(26): 10235-10247.
[67] Wu W, Wu X, Zhao J, et al. Synergetic effect of C*N^N/C^N^N coordination and the arylacetylide ligands on the photophysical properties of cyclometalated platinum complexes [J]. Journal of Materials Chemistry, 2015, 3: 2291–2301.
[68] Wu W, Huang D, Yi X, et al. Tridentate cyclometalated platinum (II) complexes with strong absorption of visible light and long-lived triplet excited states as photosensitizers for triplet-triplet annihilation upconversion [J]. Dyes and Pigments, 2013, 96(1): 220-231.
[69] Wen H M, Wang J Y, Li B, et al. Phosphorescent square-planar platinum(II) complexes of 1,3-bis(2-pyridylimino)isoindoline with a monodentate strong-field ligand [J]. European Journal of Inorganic Chemistry, 2013, 2013(27): 4789-4798.
[70] Zhang X P, Mei J F, Lai J C, et al. Mechano-induced luminescent and chiroptical switching in chiral cyclometalated platinum(II) complexes [J]. Journal of Materials Chemistry C, 2015, 3(10): 2350-2357.
[71] Shao J Y, Zhong Y W. Monometallic osmium(II) complexes with bis(N-methylbenzimidazolyl)benzene or-pyridine: a comparison study with ruthenium(II) analogues [J]. Inorganic Chemistry 2013, 52(11): 6464-6472.
[72] Sun M J, Nie H J, Yao J, et al. Bis-triarylamine with a cyclometalated diosmium bridge: a multi-stage redox-active system [J]. Chinese Chemical Letters, 2015, 26(6): 649-652.
[73] Constable E C, Holmes J M, et al. A cyclometallated analogue of tris(2,2′-bipyridine)ruthenium(II) [J]. Journal of Organometallic Chemistry, 1986, 301(2): 203-208.
[74] Bomben P G, Robson K C D, Sedach P A, et al. On the Viability of Cyclometalated Ru(II) Complexes for Light-Harvesting Applications [J]. Inorganic Chemistry, 2009, 48(20): 9631–9643.
[75] Hadadzadeh H, DeRos M C, Yap G P A, et al. Cyclometalated Ruthenium Chloro and Nitrosyl Complexes [J]. Inorganic Chemistry, 2002, 41(24): 6521−6526.
[76] Aiki S, Kijim Y, Kuwabara J, et al. Ligand modification of cyclometalated ruthenium complexes in the aerobic oxidative dehydrogenation of imidazolines [J]. ACS Catalysis, 2013, 3(5): 812-816.
[77] Hartshorn C M, Steel P J. Cyclometalated compounds. XI.1 single and double cyclometalations of poly(pyrazolylmethyl)benzenes [J]. Organometallics 1998, 17(16): 3487-3496.
[78] Bomben P G, Thériault K D, Berlinguette C P. Strategies for optimizing the performance of cyclometalated ruthenium sensitizers for dye-sensitized solar cells [J]. European Journal of Inorganic Chemistry, 2011, 2011(11): 1806-1814.
[79] Bomben P G, Gordon T J, Schott E, et al. A trisheteroleptic cyclometalated ruII sensitizer that enables high power output in a dye-sensitized solar cell [J]. Angewandte Chemie International Edition, 50(45): 10682-10685.
[80] Pogozhe D V, Bezdek M J, Schauer P A, et al. Ruthenium(II) complexes bearing a naphthalimide fragment: a modular dye platform for the dye-sensitized solar cell [J]. Inorganic Chemistry, 2013, 52(6): 3001-3006.
[81] Lagadec R L, Estevez H, Cerón-Camacho R, et al. Cyclometalated ruthenium(II) complexes of benzo[h]quinoline (bzqH)[Ru(bzq)(NCMe)4]+, [Ru(bzq)(LL)(NCMe)2]+, and [Ru(bzq)(LL)2]+ (LL = bpy, phen) [J]. Inorganica Chimica Acta, 2010, 363(3): 567-573.
[82] Huang J F, Liu J M, Su P Y, et al. Highly efficient and stable cyclometalated ruthenium(II) complexes as sensitizers for dye-sensitized solar cells [J]. Electrochimica Acta, 2015, 174: 494-501.
[83] Makarova L, Nesmeyanov A(Eds.), The organic compounds of mercury, methods of elemento-organic chemistry, Vol. 4, North-Holland, Amsterdam, 1967.
[84] Constable E C, Leese T A. Metal exchange in organomercury complexes; a facile route to cyclometallated transition metal complexes [J]. Journal of Organometallic Chemistry, 1987, 335(3): 293-299.
[85] Lagadec R L, Alexandrova L, Estevez H, et al. Bis-ruthena(III)cycles [Ru(C∩N)2(N∩N)]PF6 as Low-Potential Mediators for PQQ Alcohol Dehydrogenase (C∩N = 2-phenylpyridinato or 4-(2-tolyl)pyridinato, N∩N = bpy or phen) [J]. European Journal of Inorganic Chemistry, 2006, 2006(14): 2735-2738.
[86] Hamor T, Al-Selim N, West A A, et al. Bis(2-(2-pyridyl)phenyl)tritelluride-synthesis and crystal structure [J]. Journal of Organometallic Chemistry, 1986, 310(1): C5-C7.
[87] Reverco P, Schmehl R H, Cherry W R, et al. Cyclometalated complexes of ruthenium. 2. Spectral and electrochemical properties and X-ray structure of bis(2,2'-bipyridyl)(4-nitro-2-(2-pyridyl)phenyl)ruthenium(II) [J]. Inorganic Chemistry, 1985, 24(24): 4078-4082.
[88] Padhi S K, Fukuda R, Ehara M. el at. Comparative study of CÙN and NÙC type cyclometalated ruthenium complexes with a NAD+/NADH function [J]. Inorganic Chemistry, 2012, 51(15): 8091−8102.
[89] Padhi S K, Kobayashi K, Masuno S, et al. Proton-induced dynamic equilibrium between cyclometalated ruthenium rNHC (remote N-heterocyclic carbene) tautomers with an NAD+/NADH Function [J]. Inorganic Chemistry, 2011, 50(12): 5321-5323.
[90] Concepcion J, Tsai M-K, Muckerman J T, et al. Mechanism of water oxidation by single-site ruthenium complex catalysts [J]. Journal of the American Chemical Society, 2010, 132(5): 1545-1557.
[91] Zheng Z B, Wu Y Q, Wang K Z et al. pH luminescence switching, dihydrogen phosphate sensing, and cellular uptake of a heterobimetallic ruthenium(II)-rhenium(I) complex, 2014, 43: 3273-3284.
[92] Concepcion J J, Jurss J W, Brennaman M K, et al. Making oxygen with ruthenium complexes [J]. Accounts of Chemical Research, 2009, 42(12):1954-1965.
[93] Albrecht M, Cyclometalation using d-block transition metals: fundamental aspects and recent trends [J]. Chemical Reviews, 2010, 110(2): 576-623.
[94] Tang J H, Wu S H, Shao J Y, et al. Ruthenium-amine electronic coupling bridged through phen-1,3-diyl versus phen-1,4-diyl: reverse of the charge transfer direction [J]. Organometallics, 2013, 32(16): 4564-4570.
[95] Wu S H, Shao J Y, Kang H W, et al. Substituent and solvent effects on the electrochemical properties and intervalence transfer in asymmetric mixed-valent complexes consisting of cyclometalated ruthenium and ferrocene [J]. Chemistry – An Asian Journal, 2013, 8(11): 2843–2850.
[96] Wu S H, Shen J J, Yao J, et al. Asymmetric mixed-valence complexes that consist of cyclometalated ruthenium and ferrocene: synthesis, characterization, and electronic-coupling studies [J]. Chemistry – An Asian Journal, 2013, 8(1): 138-147.
[97] Wu K Q, Guo J, Yan J F, et al. Ruthenium(II) bis(terpyridine) electron transfer complexes with alkynyl–ferrocenyl bridges: synthesis, structures, and electrochemical and spectroscopic studies [J]. Dalton Transactions, 2012, 41(36): 11000-11008.
[98] Wu K Q, Guo J, Yan J F, et al. Alkynyl-bridged ruthenium(II) 40-diferrocenyl-2,20:60,200-terpyridine electron transfer complexes: synthesis, structures, and electrochemical and spectroscopic studies [J]. Organometallics, 2011, 30(13): 3504-3511.
[100] Zhong Y W, Gong Z L, Shao J Y, et al. Electronic coupling in cyclometalated ruthenium complexes [J]. Coordination Chemistry Reviews, 2016, 312(1): 22-40.