欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学获奖人优秀论文专辑

有序化膜电极研究进展

  • 蒋尚峰 ,
  • 衣宝廉
展开
  • 1.中国科学院大连化学物理研究所,洁净能源国家实验室,辽宁 大连 116023;2. 中国科学院大学,北京 100049
衣宝廉

收稿日期: 2015-12-18

  修回日期: 2016-01-15

  网络出版日期: 2016-01-18

基金资助

国家973项目(2015CB932304)、国家自然科学基金项目(21473197、91434106)资助

The Progress of Order-Structured Membrane Electrode Assembly

  • JIANG Shang-feng ,
  • YI Bao-lian
Expand
  • 1. Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
YI Bao-lian

Received date: 2015-12-18

  Revised date: 2016-01-15

  Online published: 2016-01-18

摘要

燃料电池的性能方面在近年来有很大提高,但要实现商业化其成本和Pt用量需要进一步的降低. 大量的文献工作证明了有序化膜电极有助于提高电极中催化剂的利用率、降低Pt的用量以及增加反应的三相界面,特别是3M公司制备的纳米薄膜电极(NSTFs)是一种高活性,高稳定性的薄膜状催化层,从而电极稳定性也大幅提高. 此外也有不少工作使用导电性好的碳纳米管阵列,以及稳定性高的金属氧化物阵列等作为这种3D结构催化层中催化剂的有序载体,研究进一步提高Pt基催化剂的活性,降低Pt担载量,构效关系等一些基础性的工作. 但是总体上看,现有的有序化膜电极,均需要进一步改进. 本文评述了目前国内外有序化膜电极的研究现状.

本文引用格式

蒋尚峰 , 衣宝廉 . 有序化膜电极研究进展[J]. 电化学, 2016 , 22(3) : 213 -218 . DOI: 10.13208/j.electrochem.151242

Abstract

Performances of proton exchange membrane fuel cells (PEMFCs) have been recently improved. However, the cost and Pt loading must be further reduced for the commercialization of PEMFCs. Previous researches have proved that the order-structured electrode is beneficial to the effective utilization of Pt-based catalysts, decreasing the Pt loading and increasing the three-phase boundary for reaction. Especially, the nanostructure thin films (NSTFs) electrode, an ultra-thin catalytic layer developed by 3M Company, demonstrates high performance and durability. Besides, some other researchers have employed the high conductive carbon nanotube arrays or high stable metal oxide arrays as the order-structured catalyst supports for fundamental researches (such as, improving the Pt-specific activity, decreasing the catalysts loading or studying the essential relationships between electrode performance and structure). However, further improvement in the present advanced catalytic layer is required. This article reviews the recent developments of the order-structured catalytic layer.

参考文献

[1]    Middelman E. Improved PEM fuel cell electrodes by controlled self-assembly [J]. Fuel Cells Bull., 2002, 2: 9-12.

[2]    Debe M K. Tutorial on the Fundamental Characteristics and Practical Properties of Nanostructured Thin Film (NSTF) Catalysts [J]. Journal of the Electrochemical Society, 2013, 160(6): F522-F534.

[3]    Tian Z Q, Lim S H, Poh C K, et al. A Highly Order-Structured Membrane Electrode Assembly with Vertically Aligned Carbon Nanotubes for Ultra-Low Pt Loading PEM Fuel Cells [J]. Advanced Energy Materials, 2011, 1(6): 1205-1214.

[4]    Zhang C K, Yu H M, Li Y K, et al. Supported Noble Metals on Hydrogen-Treated TiO2 Nanotube Arrays as Highly Ordered Electrodes for Fuel Cells [J]. Chemsuschem, 2013, 6(4): 659-666.

[5]    Xia Z X, Wang S L, Li Y J, et al. Vertically oriented polypyrrole nanowire arrays on Pd-plated Nafion membrane and its application in direct methanol fuel cells [J]. Journal of Materials Chemistry A, 2013, 1: 491-494.

[6]    Samuele Galbiati, Morin A and Pauc N. Nanotubes array electrodes by Pt evaporation Half–cell characterization and PEM fuel cell demonstration [J]. Applied Catalysis B: Environmental, 2015, 165: 149-157.

[7]    Galbiati S, Morin A and Pauc N. Supportless Platinum Nanotubes Array by Atomic Layer Deposition as PEM Fuel Cell Electrode [J]. Electrochimica Acta, 2014, 125: 107-116.

[8]    Zhang M(张敏), li J J(李经建), Pan M (潘牧), et al. Catalytic Performance of Pt Nanowire Arrays for Oxygen Reduction [J]. Acta Physico-Chimica Sin.(物理化学学报), 2011, 27: 1685-1688.

[9]    Stevens D A, Rouleau J M, Mar R E, et al. Characterization and PEMFC testing of Pt1-xMx (M=Ru,Mo,Co,Ta,Au,Sn) anode electrocatalyst composition spreads [J]. Journal of the Electrochemical Society, 2007, 154(6): B566-B576.

[10]    Gancs L, Kobayashi T, Debe M K, et al. Crystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: A HRTEM study [J]. Chemistry of Materials, 2008, 20(7): 2444-2454.

[11]    Liu G C K, Stevens D A, Burns J C, et al. Oxygen Reduction Activity of Dealloyed Pt1-xNix Catalysts [J]. Journal of the Electrochemical Society, 2011, 158(8): B919-B926.

[12]    Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells [J]. Nature, 2012, 486(7401): 43-51.

[13]    Van der Vliet D F, Wang C, Tripkovic D, et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology [J]. Nature Materials, 2012, 11(12): 1051-1058.

[14]    Anusorn Kongkanand, Zhang J, Liu Z, et al. Degradation of PEMFC Observed on NSTF Electrodes [J]. Journal of The Electrochemical Society, 2014, 161: F744-F753.

[15]    Vincent Lee a V B a, c, Marcia West b, Sumit Kundu c, Darija Susac c,. Scanning transmission X-ray microscopy of nano structured thin film catalysts for proton-exchange-membrane fuel cells [J]. Journal of Power Sources, 2014, 263: 163-174.

[16]    Vojislav R. Stamenkovic, Ben Fowler, Bongjin Simon Mun, et al. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability [J]. SCIENCE 2007, 315: 492-497.

[17]    Bonakdarpour A, Lobel R, Atanasoski R T, et al. Dissolution of transition metals in combinatorially sputtered Pt1-x-yMxMy ' (M, M ' = Co, Ni, Mn, Fe) PEMFC electrocatalysts [J]. Journal of the Electrochemical Society, 2006, 153(10): A1835-A1846.

[18]    Debe M K, Schmoeckel A K, Vernstrorn G D, et al. High voltage stability of nanostructured thin film catalysts for PEM fuel cells [J]. Journal of Power Sources, 2006, 161(2): 1002-1011.

[19]    Debe M K. Effect of Electrode Surface Area Distribution on High Current Density Performance of PEM Fuel Cells [J]. Journal of the Electrochemical Society, 2012, 159(1): B54-B67.

[20]    A. J. Steinbach M K D, M. J. Pejsa, D. M. Peppin, A. T. Haug, M. J. Kurkowski, S.M. Hendricks. Influence of Anode GDL on PEMFC Ultra-Thin Electrode Water Management at Low Temperatures [J]. The Electrochemical Society, 2011: 449-457.

[21]    Steinbach A J, Debe M K, Wong J L, et al., in Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, eds. H. A. Gasteiger, A. Weber, P. Strasser, et al., 2010, vol. 33, pp. 1179-1188.

[22]    De Volder M F L, Tawfick S H, Baughman R H, et al. Carbon Nanotubes: Present and Future Commercial Applications [J]. Science, 2013, 339(6119): 535-539.

[23]    Liu Y, Janowska I, Romero T, et al. High surface-to-volume hybrid platelet reactor filled with catalytically grown vertically aligned carbon nanotubes [J]. Catalysis Today, 2010, 150(1-2): 133-139.

[24]    Zhang L, Tan Y Q and Resasco D E. Controlling the growth of vertically oriented single-walled carbon nanotubes by varying the density of Co-Mo catalyst particles [J]. Chemical Physics Letters, 2006, 422(1-3): 198-203.

[25]    Melechko A V, Merkulov V I, McKnight T E, et al. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly [J]. Journal of Applied Physics, 2005, 97(4).

[26]    Chhowalla M, Teo K B K, Ducati C, et al. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J]. Journal of Applied Physics, 2001, 90(10): 5308-5317.

[27]    Hornyak G L, Dillon A C, Parilla P A, et al. Template synthesis of carbon nanotubes [J]. Nanostructured Materials, 1999, 12(1-4): 83-88.

[28]    Meyyappan M, Delzeit L, Cassell A, et al. Carbon nanotube growth by PECVD: a review [J]. Plasma Sources Science & Technology, 2003, 12(2): 205-216.

[29]    Wang Q, Wang X, Chai Z, et al. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications [J]. Chemical Society Reviews, 2013, 42(23): 8821-8834.

[30]    Ruvinskiy P S, Bonnefont A, Houlle M, et al. Preparation, testing and modeling of three-dimensionally ordered catalytic layers for electrocatalysis of fuel cell reactions [J]. Electrochimica Acta, 2010, 55(9): 3245-3256.

[31]    Antoine Bonnefont, Pavel Ruvinskiy, Marlene Rouhet, et al. Advanced catalytic layer architectures for polymer electrolyte membrane fuel cells [J]. Advanced Review, 2014, 3: 505-521.

[32]    Dameron A A, Pylypenko S, Bult J B, et al. Aligned carbon nanotube array functionalization for enhanced atomic layer deposition of platinum electrocatalysts [J]. Applied Surface Science, 2012, 258(13): 5212-5221.

[33]    Maiyalagan T, Viswanathan B and Varadaraju U. Nitrogen containing carbon nanotubes as supports for Pt - Alternate anodes for fuel cell applications [J]. Electrochemistry Communications, 2005, 7(9): 905-912.

[34]    Murata S, Imanishi M, Hasegawa S, et al. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells [J]. Journal of Power Sources, 2014, 253: 104-113.

[35]    Zhu W, Zheng J P, Liang R, et al. Durability Study on SWNT/Nanofiber Buckypaper Catalyst Support for PEMFCs [J]. Journal of the Electrochemical Society, 2009, 156(9): B1099-B1105.

[36]    Mezalira D Z and Bron M. High stability of low Pt loading high surface area electrocatalysts supported on functionalized carbon nanotubes [J]. Journal of Power Sources, 2013, 231: 113-121.

[37]    Zhang L, Wang L, Holt C M B, et al. Highly corrosion resistant platinum-niobium oxide-carbon nanotube electrodes for the oxygen reduction in PEM fuel cells [J]. Energy & Environmental Science, 2012, 5(3): 6156-6172.

[38]    Zheng-Zhi Jiang, Zhen-Bo Wang, Yuan-Yuan Chu, et al. Carbon riveted microcapsule Pt-MWCNTs-TiO2 catalyst prepared by in situ carbonized glucose with ultrahigh stability for proton exchange membrane fuel cell [J]. Energy & Environmental Science, 2011, 4: 2558-2566.

[39]    Ruvinskiy P S, Bonnefont A, Pham-Huu C, et al. Using Ordered Carbon Nanomaterials for Shedding Light on the Mechanism of the Cathodic Oxygen Reduction Reaction [J]. Langmuir, 2011, 27(14): 9018-9027.

[40]    Bonakdarpour A, Tucker R T, Fleischauer M D, et al. Nanopillar niobium oxides as support structures for oxygen reduction electrocatalysts [J]. Electrochimica Acta, 2012, 85: 492-500.

[41]    Lina Gao, Wang X F, Xie Z, et al. High-Performance Energy-Storage Devices Based on WO3 Nanowire Arrays Carbon Cloth Integrated Electrodes [J]. Journal of Materials Chemistry A, 2013, 1: 7167-7173.

[42]    Jiang S F, Yi B L, Zhang C K, et al. Vertically Aligned Carbon-coated Titanium Dioxide Nanorod Arrays on Carbon Paper with Low Platinum for Proton Exchange Membrane Fuel Cells [J]. Journal of power sources, 2015, 276: 80-88.

[43]    Lim D-H, Lee W-J, Wheldon J, et al. Electrochemical Characterization and Durability of Sputtered Pt Catalysts on TiO2 Nanotube Arrays as a Cathode Material for PEFCs [J]. Journal of the Electrochemical Society, 2010, 157(6): B862-B867.

[44]    Zhang C K, Yu H M, Li Y K, et al. Preparation of Pt catalysts decorated TiO2 nanotube arrays by redox replacement of Ni precursors for proton exchange membrane fuel cells [J]. Electrochimica Acta, 2012, 80: 1-6.

[45]    Zhang C K, Yu H M, Li Y K, et al. Highly stable ternary tin–palladium–platinum catalysts supported on hydrogenated TiO2 nanotube arrays for fuel cells [J]. Nanoscale, 2013, 5: 6834-6841.

文章导航

/