欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

三元正极材料前驱体Ni1/3Co1/3Mn1/3(OH)2的连续合成与条件探究

  • 蒋志军 ,
  • 张亚莉 ,
  • 王乾 ,
  • 张慧
展开
  • 1. 淄博国利新电源科技有限公司,山东 淄博 255086;2. 淄博市非对称大动力电容电池工程技术研究中心,山东 淄博 255086;3. 山东理工大学化学工程学院,山东 淄博 255086

收稿日期: 2015-11-29

  修回日期: 2015-12-30

  网络出版日期: 2022-01-07

基金资助

山东省自主创新专项(2013CXA03073)和山东省自然科学基金(No. 2016ZRD03001)资助

Continuous Synthesis and Condition Exploration of Precursor Ni1/3Co1/3Mn1/3(OH)2 Ternary Cathode Material

  • JIANG Zhi-jun ,
  • ZHANG Ya-li ,
  • WANG Qian ,
  • ZHANG Hui
Expand
  • 1. Zibo Guoli New Power Source technology Co., Ltd., Zibo, Shandong 255086, China; 2. Zibo Engineering Technology Research Center of Asymmetric Large Power Capacitor Battery, Zibo, Shandong 255086, China; 3. College of Chemical Engineering,Shandong University Of Technology , Zibo, Shandong 255086, China

Received date: 2015-11-29

  Revised date: 2015-12-30

  Online published: 2022-01-07

摘要

以硫酸锰、硫酸镍、硫酸钴为原材料、NaOH和氨水分别为沉淀剂和络合剂,采用共沉淀法制备三元正极材料前驱体Ni1/3Co1/3Mn1/3(OH)2. 探究了搅拌速度对造核颗粒形貌和晶核流量、氨水流量、浆料返流、搅拌桨对晶体结构、前驱体形貌、粒度及其粒度分布的影响. 物理表征结果表明,搅拌速度300 r•min-1时,生成的晶核聚集成球形或类球形,分散性好,颗粒粒径4~5 μm;在造核金属液流量0.4 L•h-1,生长金属液流量1.72 L•h-1,搅拌桨为推进式时,产物为单一相的β-Ni(OH)2层状结构,粒度D50为6~7 μm,振实密度≥2.0 g•cm-3,比表面积6~10 m2•g-1;电化学测试结果表明,在3.0~4.25 V电压范围内,0.2 C时,其首次放电容量为149.7 mAh•g-1,循环100次后,容量保持率为94.09 %;产物满足高端三元正极材料厂家需求. 多釜串联工艺简单有效,具有可行性,有望用于三元正极材料前驱体的规模生产.

本文引用格式

蒋志军 , 张亚莉 , 王乾 , 张慧 . 三元正极材料前驱体Ni1/3Co1/3Mn1/3(OH)2的连续合成与条件探究[J]. 电化学, 2016 , 22(5) : 528 -534 . DOI: 10.13208/j.electrochem.151128

Abstract

Commercial LiNi1/3Co1/3Mn1/3(OH)2 ternary material is generally prepared by a combination of co-precipitation and solid state reaction method. The particle size distribution and morphology of Ni1/3Co1/3Mn1/3(OH)2 precursor have a great impact on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2. In this work, the precursor Ni1/3Co1/3Mn1/3(OH)2 ternary cathode material was prepared by co-precipitation method with MnSO4, NiSO4, and CoSO4 as raw materials, NaOH as a precipitating agent and NH3•H2O as a complexing agent through continuous stirred-tank reactor series (CSTRs). The effects of stirring speed on the morphology of the nuclear particles, flow quantities of crystal nuclei and ammonia, slurry regurgitation, agitator blade structure on the morphology, crystalline structure, particle size and particle size distribution of the precursor were explored. Physical characterization results showed that the primary particles of the crystal nucleus agglomerate formed secondary particles with the particle size of 4 ~ 5 μm, and the well distributed particles were near spherical at the stirring rate of 300 r·min-1. When the pusher type agitator was used, the flow quantities of crystal nucleation and crystal growth metal liquids were 0.4  L•h-1 and 1.72  L•h-1, respectively, the product exhibited a single phase of β-Ni(OH)2 with a layered structure. The particle size (D50) of 6 ~ 7 μm, the tap density of ≥ 2.0 g•cm-3, and the BET surface area of 6 ~ 10 m2•g-1,were also obtained. The electrochemical test results revealed that the initial discharge capacity of LiNi1/3Co1/3Mn1/3O2 reached 149.7 mAh•g-1 and the capacity retention was 94.09% after 100 cycles in the voltage range of 3.0 ~ 4.25 V at 0.2 C. The product could meet demands of high-end ternary cathode material manufacturers. The CSTRs method is simple, effective and applicable. Therefore, it can be potentially used for a large scale preparation of ternary material precursors.

参考文献

[1]   Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries [J]. Chem. Lett, 2001, 30(7): 642-643.

[2]   Hu D G (胡东阁), Wang Z Z ( 王张志), Liu J L (刘佳丽), et al. The Effect of Precursors on Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Material [J]. Journal of Electrochemistry (电化学), 2013, 19(3): 204-209.

[3]   Li Q(李晴), Jiang Q(姜强), Li L(李琳), et al. Synthesis and Condition Exploration of Precursor MnxNiyCozCO3 for Ternary Cathode Material [J]. Inorganic Chemicals Industry(无机盐工业), 2015, 47(1): 75-78.

[4]   Yang Y, Xu S M, Xie M, et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2 [J]. Journal of Alloys and Compounds, 2015, 619(15):  846–853.

[5]   Fan Y L(樊勇利), Xu G F(许国峰), Li P(李平). Analysis and control of factors influencing synthesizing spherical Ni1/3Co1/3Mn1/3(OH)2 with higher density [J]. Chinese Journal of Power Sources(电源技术), 2012, 36(6): 789–791.

[6]   Cheng C X, Tan L, Liu H W, et al. High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation [J]. Materials Research Bulletin, 2011, 46 (11): 2032~2035.

[7]   Huang Y J(黄原君), Gao D S(高德淑), Li C H(李朝晖), et al. Electrochemical performances of the layered cathode material LiNi1/3Co1/3Mn1/3O2 doped with Si/F ions [J]. Chinese Journal of Inorganic chemistry(无机化学学报), 2007, 23(3) : 466472.

[8]   Wang X Y(王旭阳), Ye X H(叶学海), Zhi X K(郅晓科), et al. Influence of pH on physical properties of ternary material precursors [J]. Inorganic chemicals industry(无机盐工业), 2012, 44(9): 5658.

[9]   Chen G C(谌谷春), Tang X C(唐新村), Wang Z M(王志敏). Preparation of LiNi1/3Co1/3Mn1/3O2 cathode material by improved coprecipitation method [J]. Journal of Central South University(中南大学学报), 2012, 43(10): 3780–3784.

[10]Fu F, Xu G L, Wang Q, et al. Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery [J]. J. Mater. Chem. A, 2013, 1: 3860–3864.

[11]Liang L W, Du K, Peng Z D, et al. Co–precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries [J]. Electrochimica Acta, 2014, 130(1): 8289.

[12]Huang Z L, Gao J, He X M, et al. Well-ordered spherical LiNixCo(1−2x)MnxO2 cathode materials synthesized from cobolt concentration-gradient precursors [J]. Journal of Power Sources, 2012, 202: 284−290.

[13]Wang W D(王伟东), Chou W H(仇卫华), Ding Q Q(丁倩倩). Nickel cobalt manganese based cathode materials for li-ion batteries technology production and application[M]. Beijing: Chemical Industry Press(化学工业出版社), 2015: 188-236.

[14]Chang Z R, LigG G, Zhao Y J, et al. Influence of preparation conditions of spherical nickel hydroxide on its electrochemical properties [J]. Journal of Power Sources, 1998, 74(2): 252–254.

[15]Lee M H, Kang Y J, Myung S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation [J]. Electrochimica Acta, 2004, 50(4): 939948.

[16]Xia H, Tang S B, Lu L. Novel synthesis and electrochemical behavior of layered LiNi0.5Mn0.5O2[J]. Journal of Alloys and Compounds, 2008, 449(1-2): 296-299.

[17]Xia H, Wang H L, Xiao W, et al. Properties of LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by a modified Pechini method for high-power lithium-ion batteries[J]. Journal of Alloys and Compounds, 2009, 480(2): 696-701.

文章导航

/