欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

不同锂盐对超支化/梳状复合型聚合物电解质的性能影响研究

  • 户献雷 ,
  • 梁晓旭 ,
  • 章明秋 ,
  • 张若昕 ,
  • 张利萍 ,
  • 阮文红
展开
  • 1. 中山大学化学与化学工程学院, 广东广州, 510275; 2. 广州天赐高新材料股份有限公司, 广东广州, 510760

收稿日期: 2015-10-13

  修回日期: 2015-12-07

  网络出版日期: 2016-01-04

基金资助

国家自然科学基金项目(No. 51473186)和广州市科技计划项目(No. 201508010052)资助

Effects of Lithium Salts on the Properties of Hyperbrandched/Comb-like Composite Polymer Electrolytes

  • HU Xian-Lei ,
  • LIANG Xiao-Xu ,
  • ZHANG Ming-Qiu ,
  • ZHANG Ruo-Xin ,
  • ZHANG Li-Ping ,
  • RUAN Wen-Hong
Expand
  • 1.School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275,China; 2. Guangzhou Tinci Materials Technology Co., Ltd., Guangzhou 510600, China

Received date: 2015-10-13

  Revised date: 2015-12-07

  Online published: 2016-01-04

摘要

利用PVA侧链上的羟基的化学活性, 采用超支化聚胺-酯对改性纳米SiO2和PVA接枝改性, 并加入不同锂盐,制备了SiO2-g-HBPAE/PVA-g-HBPAE超支化/梳状复合型聚合物电解质, 利用SEM观察了纳米粒子在基体中的分散情况, 采用DSC、拉伸实验以及介电谱研究了锂盐种类及添加量对复合体系性能的影响. 结果表明, 超支化接枝改善了SiO2和基体的界面相容性; 磺酸类锂盐在复合材料中表现出自增塑现象, 材料的玻璃化转变温度(Tg)大幅度下降; LiClO4在基体中的离解能力强于LiCF3SO3和 LiN(SO3CF3)2; 当LiCF3SO3添加量为20 %(by mass, 下文同)时, 聚合物电解质的室温电导率达到最大值2.58×10-6 S•cm-1.

本文引用格式

户献雷 , 梁晓旭 , 章明秋 , 张若昕 , 张利萍 , 阮文红 . 不同锂盐对超支化/梳状复合型聚合物电解质的性能影响研究[J]. 电化学, 2016 , 22(5) : 535 -541 . DOI: 10.13208/j.electrochem.151013

Abstract

Based on the chemical characteristics of the hydroxyl group of PVA side-chain, the hyperbrandched poly(amine-ester) (HBPAE) was used to hypergraftingly pretreated nano-silica (SiO2) and polyving akohol (PVA). And different lithium salts were added to fabricate the SiO2-g-HBPAE/PVA-g-HBPAE hyperbrandched/comb-like composite polymer electrolytes (CPEs). The dispersion of nanoparticles in matrix was observed by SEM. The effects of different lithium salts on the properties of CPEs were studied by DSC, tensile test and dielectric spectra. The results showed that the hypergrafting method improved the interphase compatibility between SiO2 and matrix. Sulfonic acid type lithium salts accelerated self-plasticizing with the Tg values being decreased. The LiClO4 manifested stronger solubility than LiCF3SO3 and LiN(SO3CF3)2 in the polymer matrices. The ionic conductivity of the polymer electrolytes reached the maximum value of 2.58×10-6 S·cm-1 after the addition of 20% LiCF3SO3 at room temperature.

参考文献

[1]    Kim Y H. Hyperbranchecs polymers 10 years after [J]. Journal Of Polymer Science Part a-Polymer Chemistry, 1998, 36(11): 1685-1698.

[2]    Atsushi Nishimoto, Kunihiro Agehara, Noriyuki Furuya, et al. High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains [J]. Macromolecules, 1999, 32(5): 1541-1548.

[3]    Takahito Itoh, Yoshiaki Ichikawa, Nobuyuki Hirata, et al. Effect of branching in base polymer on ionic conductivity in hyperbranched polymer electrolytes [J]. Solid State Ionics, 2002, 150(3): 337-345.

[4]    Takahito Itoh, Yosiaki Ichikawa, Takahiro Uno, et al. Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2 [J]. Solid State Ionics, 2003, 156(3): 393-399.

[5]    Weimer M W, Frechet  J M J, Gitsov I. Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization: Highly branched vs. linear poly 4-(chloromethyl)styrene by metal-catalyzed "living" radical polymerization [J]. Journal Of Polymer Science Part a-Polymer Chemistry, 1998, 36(6): 955-970.

[6]    Lach C, Hanselmann R, Frey H, et al. Hyperbranched carbosilane oxazoline-macromonomers: polymerization and coupling to a trimesic acid core [J]. Macromolecular Rapid Communications, 1998, 19(9): 461-465.

[7]    Kuo P L, Ghosh S K, Liang W J, et al. Hyperbranched polyethyleneimine architecture onto poly(allylamine) by simple synthetic approach and the chelating characters [J]. Journal Of Polymer Science Part a-Polymer Chemistry, 2001, 39(17): 3018-3023.

[8]    Li Q, Lin Y Q, Wang F S. Study on a comb-like polymer electrolyte based on the backbone of ethylene–maleic anhydride copolymer [J]. Solid State Ionics, 1998, 109(1–2): 145-150.

[9]    Dailey L A, Wittmar M, Kissel T. The role of branched polyesters and their modifications in the development of modern drug delivery vehicles [J]. Journal of controlled release : official journal of the Controlled Release Society, 2005, 101(1-3): 137-149.

[10] Hu X L, Hou G M, Zhang M Q, et al. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica [J]. J Mater Chem, 2012, 22(36): 18961-18967.

[11]  Yu Y, Rong M Z, Zhang M Q. Grafting of hyperbranched aromatic polyamide onto silica nanoparticles [J]. Polymer, 2010, 51(2): 492-499.

[12] Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes [J]. Progress in Polymer Science, 2011, 36(12): 1629-1648.

[13] Zhang H (张恒), Zheng L P (郑丽萍), Nie J (聂进), et al. Single Lithium-Ion Conducting Solid Polymer Electrolytes [J]. Progress In Chemistry (化学进展), 2014, 26(6): 1005-1020.

[14] Jia Z, Yuan W, Sheng C J, et al. Optimizing the electrochemical performance of imidazolium-based polymeric ionic liquids by varying tethering groups [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(11): 1339-1350.

[15] Yuan Y B(袁余斌), Nie J(聂进). Complexes of Bis[ (perfluoroalkyl)sulfonyl] imides and Their Catalytic Applications [J]. Chinese J Org Chem (有机化学), 2004, 24(8): 857-863.

[16] Green O, Grubjesic S, Lee S W, et al. The Design of Polymeric Ionic Liquids for the Preparation of Functional Materials [J]. Polym Rev, 2009, 49(4): 339-360.

[17] Zhou T H, Ruan W H, Rong M Z, et al. Keys to toughening of non-layered nanoparticles/polymer composites [J]. Advanced Materials, 2007, 19(18): 2667-2671.

[18] Andreev Y G, Bruce P G. Polymer electrolyte structure and its implications [J]. Electrochimica Acta, 2000, 45(8-9): 1417-1423.

[19] Zhou S H, Kim D. All solid polymer electrolytes based on polar side group rotation for rechargeable lithium batteries [J]. Polymers for Advanced Technologies, 2010, 21(11): 797-801.

[20] Zhang J W, Huang X B, Wei H, et al. Preparation and electrochemical behaviors of composite solid polymer electrolytes based on polyethylene oxide with active inorganic-organic hybrid polyphosphazene nanotubes as fillers [J]. New J Chem, 2011, 35(3): 614-621.

[21] Luciano T. C, Sun B, Jeschull F, et al. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend [J]. The Journal of chemical physics, 2015, 143(2): 024904.

[22] Liang B, Tang S Q, Jiang Q B, et al. Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3 [J]. Electrochimica Acta, 2015, 169: 334-341.

[23] Baskaran R, Selvasekarapandian S, Kuwata N, et al. Structure, thermal and transport properties of PVAc-LiClO4 solid polymer electrolytes [J]. J Phys Chem Solids, 2007, 68(3): 407-412.

[24] Marcinek M, Ciosek M, ?ukowska G, et al. Ionic association in liquid (polyether–Al2O3–LiClO4) composite electrolytes [J]. Solid State Ionics, 2005, 176(3–4): 367-376.

[25] Luo W X(骆伟新), Liu Y P(刘煜平), Yang S Y(杨树颜), et al. Synthesis and Conduction Mechanism of Comb-like Polymethacrylate Solid Polymer Electrolytes [J]. Acta Polymerica Sinica(高分子学报), 2014, (01): 63-71.

文章导航

/