欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

葡萄糖乙酸钠不同基质微生物燃料电池电化学性能对比研究

  • 樊磊1 ,
  • 赵煜1 ,
  • 李婷1 ,
  • 原沁波1 ,
  • 2 ,
  • 王恩志2 ,
  • 王晓斌1 ,
  • 王俊文1*
展开
  • 1.太原理工大学 洁净化工研究所,山西 太原 030024;2. 清华大学 水沙科学与水利水电工程国家重点实验室,北京 100000

收稿日期: 2015-09-26

  修回日期: 2015-11-10

  网络出版日期: 2015-12-01

基金资助

山西省基金项目(2014011014-6)资助

The Study on Comparison of Electrochemical Performance in Microbial Fuel Cell with Glucose and Sodium Acetate Acting as Substrates

  • FAN Lei1 ,
  • ZHAO Yu1 ,
  • LI Ting1 ,
  • YUAN Qin-bo1 ,
  • 2 ,
  • WANG En-zhi2 ,
  • WANG Xiao-bin1 ,
  • WANG Jun-wen1*
Expand
  • 1.Institute of Clean Technique for Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100000, China

Received date: 2015-09-26

  Revised date: 2015-11-10

  Online published: 2015-12-01

摘要

本文通过接种生活污水处理厂的好氧污泥和厌氧污泥,撘建两个双室微生物燃料电池(MFC,Microbial fuel cell),分别以葡萄糖、乙酸钠作为基质,在0.0335 mol•L-1基质浓度下研究不同基质微生物燃料电池的产电性能. 研究表明:葡萄糖体系的阳极半电池阻抗为222 Ω,乙酸钠体系为213.67 Ω,说明两种不同有机基质对电池内阻无明显影响. 葡萄糖、乙酸钠体系的交换电流密度i0分别为3.463 mA•m-2、 5.987 mA•m-2;COD去除率分别为50.6%、55.8%;库仑效率分别为42.1%、46.2%. 葡萄糖为基质时最大输出功率密度为394.2 mW•m-2,相应的最大电流密度为1800 mA•m-2;乙酸钠为基质时最大输出功率密度为311.9 mW•m-2,相应的最大电流密度为1527.5 mA•m-2. 葡萄糖代谢过程复杂并不单一,且代谢不彻底,乙酸钠分子简单更容易代谢,因此乙酸钠的库伦效率及COD去除率均高于葡萄糖,由以上数据可以得出葡萄糖为基质的燃料电池产电性能较好.

本文引用格式

樊磊1 , 赵煜1 , 李婷1 , 原沁波1 , 2 , 王恩志2 , 王晓斌1 , 王俊文1* . 葡萄糖乙酸钠不同基质微生物燃料电池电化学性能对比研究[J]. 电化学, 2016 , 22(1) : 81 -87 . DOI: 10.13208/j.electrochem.150926

Abstract

By inoculating aerobic sludge and anaerobic sludge from the sewage treatment plant, two sets of dual-chamber microbial fuel cells (MFCs) were built with either glucose or sodium acetate acting as a substrate. Accordingly, the electrochemical performances of MFCs were explored with the concentration of the substrates being 0.0335 mol•L-1. The results of the comparative study in glucose system and sodium acetate system showed that the impedance values of anodic half cell were 222 Ω for glucose and 213.67 Ω for sodium acetate, implying no significant effect on the internal resistance in battery with the different substrates. The exchange current densities were 3.463 mA•m-2 and 5.987 mA•m-2, while the COD removal rates 50.6% and 55.8% for glucose and sodium acetate, respectively. Furthermore, the coulombic efficiencies reached 42.1% and 46.2% with the maximum output power density of 394.2 mW•m-2 and 311.9 mW•m-2 for glucose and sodium acetate, respectively. Since the process of glucose metabolism is more complicated with less complete metabolism as compared with the simpler sodium acetate molecules with more facilitated metabolism, the coulombic efficiency and COD removal rate in sodium acetate system were higher than those in glucose system, which led to better eletricity production capacity.

参考文献

[1] F.J. Hernández-Fernández, A. Pérez de los Ríos, M.J. Salar-García, V.M. Ortiz-Martínez, L.J. Lozano-Blanco, C. Godínez, F. Tomás-Alonso, J. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment[J]. Fuel Processing Technology, 2015, 138: 284–297.

[2] Hou M(侯明), Yi B L(衣宝廉). Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry(电化学), 2012, 18(1): 1-13.

[3] Liu H, Cheng S A, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J]. Environmental science & technology, 2005, 39 (2), 658–662.

[4] Kim J R, Jung S H, Regan J M, et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells[J]. Bioresource Technology, 2007, 98(13): 2568–2577.

[5] Anna Vilajeliu-Pons, Sebastià Puig, Narcís Pous, Inmaculada Salcedo-Dávila, Lluís Bañeras, Maria Dolors Balaguer, Jesús Colprim. Microbiome characterization of MFCs used for the treatment of swine manure[J]. Journal of Hazardous Materials, 2015, 288: 60–68.

[6] Wang J Q(汪家权), Xia X L(夏雪兰), Ding W W(丁巍巍). Operating parameters for a microbial fuel cell in  treating phenol-containing wastewater[J]. Acta Scientiae Circumstantiae(环境科学学报), 2010, 30(4): 735- 741.

[7] Dong Y, Qu Y P, He W H, et al. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode[J]. Bioresource Technology, 2015, 195: 66–72.

[8] Wen Q, Wu Y, Zhao L X, et al. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell[J]. Journal of Zhejiang University-SCIENCE B, 2010, 11(2): 87–93.

[9] Motos P R, Heijne A, Weijden R, et al. High rate copper and energy recovery in microbial fuel cells[J]. Frontiers in Microbiology, 2015, 6: 1-8.

[10] Rikame S S, Mungray A A, Mungray A K. Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell [J]. International Biodeterioration & Biodegradation, 2012, 75(2012): 131–137.

[11] Chae K J, Choi M J, Lee J W, et al. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells[J]. Bioresource Technology, 2009, 100(14): 3518–3525.

[12] Liu C M(刘春梅), Liu L(刘磊), Xu B(徐斌), et al. Effects of inlet substrate and buffer concentrations on MFC performance[J]. Environmental Science & Technology(环境科学与技术), 2015, 38(2) 48-51.

[13] Larrosa G A, Scott K, Head I M, et al. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12) : 3985–3994.

[14] Liao Q, Zhang J, Li J, et al. Electricity generation and COD removal of microbial fuel cells (MFCs) operated with alkaline substrates[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19349–19354.

[15] Liu Z D, Liu J, Zhang S P, et al. Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates[J]. Biochemical Engineering Journal, 2009, 45(3): 185-191.

[16] Bao Y(宝玥), Wu X Q(吴霞琴). Progress in research for biofuel cell[J]. Journal of Electrochemistry(电化学), 2004, 10(1): 1-8

[17] Yu J R(于景荣), Xing D M(邢丹敏), Liu F Q(刘富强), et al. Research progress on proton exchange membranes of fuel cells[J]. Journal of Electrochemistry(电化学), 2001, 7(4): 385-395.

[18] He Z, Wagner N, Minteer S D, et al. An upflow microbial fuel cell with an Interior cathode:  assessment of the internal resistance by impedance spectroscopy[J]. Environmental Science & Technology, 2006, 40(17): 5212-5217.

[19] Katz E, Willner I. Probing bimolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA sensor, and enzyme biosensors[J]. Electroanalysis, 2003, 15, 913-947.

[20] Wagner N. Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy[J]. Journal of Applied Electrochemistry, 2002, 32: 859-863.

[21] Hou M Y(侯孟炎), Wang K(王珂), Dong X L(董晓丽), et al. Synthesis graphene wrapped Li-rich layered metal oxide and its electrochemical performance[J]. Journal of Electrochemistry(电化学), 2015, 21(3): 195-200.

[22] Rabaey K, Boon N, Siciliano S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology, 2004, 70(9): 5373-5382.

[23] Reguera G, Mccarthy K D, Metha T. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 455: 1098-1101.

[24] Cheng S A, Liu H, Logan B E. Power densities using different cathode catalysts(Pt and CoTMPP) and polymer binders(Nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental science & technology, 2006, 40(1): 364-369.

[25] 查全性. 电极过程动力学导论[M]. 北京: 科学出版社, 2001: 130-139.

[26] Kim J R, Premier G C, Hawkes F R, et al. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate[J]. Bioresour Technology, 2010, 101(4): 1190-1198.

文章导航

/