基于对羟基苯硼酸为前驱体的金纳米粒子修饰电极电化学检测过氧化氢
收稿日期: 2015-09-08
修回日期: 2015-11-08
网络出版日期: 2015-11-16
基金资助
吉林省教育厅项目(No. 2013318,No. 2013372)、吉林省社会科学项目(No. 2012B260)资助
Electrochemical Detection of Hydrogen Peroxide at AuNPs Modified Electrode Using p-Hydroxyphenylboronic Acid as a Precursor
Received date: 2015-09-08
Revised date: 2015-11-08
Online published: 2015-11-16
以对羟基苯硼酸为前驱体,利用H2O2可以定量氧化对羟基苯硼酸产生对羟基苯酚的原理,以反应产物对羟基苯酚为电化学信号物质,结合金纳米粒子修饰玻碳电极(AuNPs/GCE),发展了一种间接检测H2O2的电化学方法. 由于AuNPs/GCE具有有效电子传递性能和比表面积大等优点,对硼酸氧化产物具有较高的催化活性,因此在含1.0 mmol•L-1对羟基苯硼酸的0.1 mol•L-1 pH 7.5 PBS中,AuNPs/GCE可以检测到1.0 ~ 1.0 × 103 μmol•L-1的H2O2,检测限为0.5 μmol•L-1. 同时,该方法具有良好的选择性和重现性,且操作简单、速度快、价格低廉,非常适用于实际样品中H2O2含量的测定.
王春燕* , 刘晓秋 , 戚颖欣 . 基于对羟基苯硼酸为前驱体的金纳米粒子修饰电极电化学检测过氧化氢[J]. 电化学, 2016 , 22(1) : 88 -93 . DOI: 10.13208/j.electrochem.150908
We developed a new method for electrochemical detection of hydrogen peroxide (H2O2) based on boronate oxidation of p-hydroxyphenylboronic acid. This method using p-aminophenol which is produced from the reaction of H2O2 and p-aminophenylboronic acid as a well electrochemical probe, combined with a gold nanoparticles (AuNPs) modified electrode for an indirect detection of H2O2. Because of the large surface area and enhanced electrocatalytic behavior by the AuNPs modified electrode, the detection sensitivity was improved. The method could detect H2O2 in the concentration range of 1 ~ 100 μmol•L-1 and 0.1 ~ 1 mmol•L-1 in 0.1 mol•L-1 pH 7.5 PBS containing 1.0 mmol•L-1 p-hydroxyphenylboronic acid. The low detection limit was 0.5 μmol•L-1. The proposed method had good selectivity and stability. Moreover, the method was quick, simple and cheap, which has potential application in real samples analysis.
[1] Silva R A B, Montes R H O, Richter E M, et al. Rapid and selective determination of hydrogen peroxide residues in milk by batch injection analysis with amperometric detection[J]. Food Chemistry, 2012, 133(1): 200-204.
[2] Welch C M, Banks C E, Simm A O, et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-ananlytical detection of hydrogen peroxide[J]. Analytical and Bioanalytical Chemistry, 2005, 382(1): 12-21.
[3] Gao F X(高风仙), Yuan R(袁若), Chai Y Q(柴雅琴), et al. Hydrogen peroxide biosensor based on poly(thionine) and Au colloid[J]. Journal of Instrumental Analysis(分析测试学报), 2007, 26(1): 81-84.
[4] Li Y J, Huang F Y, Luo Z X, et al. A new hydrogen peroxide biosensor based on synergy of Au@Au2S2O3 core-shell nanomaterials and multi-walled carbon nanotubes towards hemoglobin[J]. Electrochimica Acta, 2012, 74: 280-286.
[5] Mao S X, Long Y M, Li W F, et al. Core-shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications[J]. Biosensors and Bioelectronics, 2013, 48: 258-262.
[6] Tangkuaram T, Ponchio C, Kangkasomboon T, et al. Design and development of a highly stable hydrogen peroxide biosensor onscreen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan[J]. Biosensors and Bioelectronics, 2007, 22: 2071-2080.
[7] Li L(李理), LU H M(卢红梅), Deng Liu(邓留). H2O2 Electrochemistry biosensor based on graphene and gold nanorods composites[J]. Chinese Journal of Analytical Chemistry(分析化学), 2013, 41(5): 719-724.
[8] Miao Y E, He S X, Zhong Y L, et al. A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning[J]. Electrochimica Acta, 2013, 99: 117-123.
[9] Sun X L, Guo S J, Liu Y, et al. Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2[J]. Nano Letters, 2012, 12(9): 4859-4866.
[10] Huang J S, Wang D W, Hou H Q, et al. Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH[J]. Advanced Functional Materials, 2008, 18(3): 441-448.
[11] Palanisamy S, Chen S M, Sarawathi R. A novel nonenzymatic hydrogen peroxide sensor based on reduced grapheme oxide/ZnO composite modi?ed electrode[J]. Sensors and Actuators B: Chemical, 2012, 166-167: 372-377.
[12] Gogoi A, Bora U. An iodine-promoted, mild and efficient method for the synthesis of phenols from arylboronic acids[J]. Synlett, 2012, 23(7): 1079-1081.
[13] Ci S Q(次素琴), Zhan L(战磊), Zou J P(邹建平), et al. Electrocatalytic activity and detection of dihydroxybenzenes on porous carbon loading polymerized phthalocyanatocobalt modified electrode[J]. Chinese Journal of Analytical Chemistry(分析化学), 2013, 41(8): 1238-1242.
[14] Debdeep M, Rajeev G, Ravi G, et al. Calix[4]arene functionalized gold nanoparticles: Application incolorimetric and electrochemical sensing of cobalt ion in organic and aqueous medium[J]. Sensors and Actuators B: Chemical, 2014, 191: 757-764.
[15] Singh S, Jain D V S, Singla M L. Sol-gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor[J]. Sensors and Actuators B: Chemical, 2013, 182: 161-169.
[16] Grabar K C, Freeman R G, Hommer M B, et al. Preparation and characterization of Au colloid monolayers[J]. Analytical Chemistry, 1995, 67(4): 735-743.
[17] Chowdhury A D, Mobin S M, Mukherjee S. [Pd(L)Cl2]-catalyzed selective hydroxylation of arylboronic acids to phenols[J]. European Journal of Inorganic Chemistry, 2011, 21: 3232-3239.
[18] Wu P(吴萍), Cai C X(蔡称心). Horseradish peroxidase-attapulgite clay nanocomposites: Fabrication and application to sensing the extracellular H2O2 released from cells[J]. Journal of Electrochemistry(电化学), 2014, 20(3): 260-265.
[19] Jia J B, Wang B Q, Wu A G, et al. A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network[J]. Analytical Chemistry, 2002, 74(9): 2217-2223.
[20] Fan L L(范丽丽), Wu L N(武丽娜), Qu Z Y(屈志宇), et al. Preparation of Pt/DNA-MWCNTs/GC electrode and its electrocatalytic activity toward H2O2 reduction[J]. Journal of Electrochemistry(电化学), 2014, 20(5): 459-464.
/
〈 |
|
〉 |